Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The purpose of the method presented here is to show how microenvironment microarrays (MEMA) can be fabricated and used to interrogate the impact of thousands of simple combinatorial microenvironments on the phenotype of cultured cells.

Abstract

Understanding the impact of the microenvironment on the phenotype of cells is a difficult problem due to the complex mixture of both soluble growth factors and matrix-associated proteins in the microenvironment in vivo. Furthermore, readily available reagents for the modeling of microenvironments in vitro typically utilize complex mixtures of proteins that are incompletely defined and suffer from batch to batch variability. The microenvironment microarray (MEMA) platform allows for the assessment of thousands of simple combinations of microenvironment proteins for their impact on cellular phenotypes in a single assay. The MEMAs are prepared in well plates, which allows the addition of individual ligands to separate wells containing arrayed extracellular matrix (ECM) proteins. The combination of the soluble ligand with each printed ECM forms a unique combination. A typical MEMA assay contains greater than 2,500 unique combinatorial microenvironments that cells are exposed to in a single assay. As a test case, the breast cancer cell line MCF7 was plated on the MEMA platform. Analysis of this assay identified factors that both enhance and inhibit the growth and proliferation of these cells. The MEMA platform is highly flexible and can be extended for use with other biological questions beyond cancer research.

Introduction

Culturing of cancer cell lines on plastic in two-dimensional (2D) monolayers remains one of the major workhorses for cancer researchers. However, the microenvironment is increasingly being recognized for its ability to impact cellular phenotypes. In cancer, the tumor microenvironment is known to influence multiple cellular behaviors, including growth, survival, invasion, and response to therapy1,2. Traditional monolayer cell cultures typically lack microenvironment influences, which has led to the development of more complex three-dimensional (3D) assays to grow cells, including commercially available purified....

Protocol

NOTE: An overview of the entire MEMA process, including estimated time, is outlined in the flow diagram shown in Figure 1. This protocol details the fabrication of MEMAs in 8-well plates. The protocol may be adapted for other plates or slides.

1. Preparation of Protein, Diluent, and Staining Buffers

  1. Equilibrate vials of ECMs, ligands, and cytokines to room temperature (RT) and briefly centrifuge. Add the appropriate volume of the appro.......

Representative Results

To simplify microenvironmental impacts on cell growth and proliferation and to identify conditions that promoted or inhibited cell growth and proliferation, the breast cancer cell line MCF7 was seeded on a set of eight 8-well MEMAs as described in the protocol. This assay exposed the cells to 48 different ECMs and 57 different ligands, for a total of 2736 combinatorial microenvironmental conditions. After 71 h in culture, cells were pulsed with EdU, fixed, permeablized, and stained with DAPI, the reaction for EdU detecti.......

Discussion

The importance of "dimensionality" and context has been a motivating factor in the development of in vitro culture systems as tools in the characterization of cancer cells through their interaction with the microenvironment11, and the ability of in vitro culture systems to mimic the in vivo environment is a driving force behind the quest to improve those culture systems. In vitro systems, however, remain significant tools of cancer research precisely because of their ability to distil.......

Acknowledgements

The work in this manuscript was supported by the NIH Common Fund Library of Network Cellular Signatures (LINCS) U54 grant HG008100 (J.W.G., L.M.H., and J.E.K) and NCI Cancer Systems Biology Consortium (CSBC) U54 CA209988grant (J.W.G., L.M.H., and J.E.K).

....

Materials

NameCompanyCatalog NumberComments
Aushon 2470Aushon BioSystemsArrayer robot system used in the protocol
Nikon HCANikonHigh Content Imaging system designed around Nikon Eclipse Ti Inverted Microscope
BioTek Precision XS liquid HandlerBioTekliquid handling robot used in the protocol
Trizma hydrochloride buffer solutionSigmaT2069
EDTAInvitrogen15575-038
GlycerolSigmaG5516
Triton X100SigmaT9284
Tween 20SigmaP7949
Kolliphor P338BASF50424591
384-well microarray plate, cylindrical wellThermo Fisherab1055
Nunc 8 well dishThermo Fisher267062
Paraformaldehyde 16% solutionElectron Microscopy Science15710
BSAFisherBP-1600
Sodium AzideSigmaS2002
Cell MaskMolecular ProbesH32713
Click-iTEdU Alexa FluorMolecular ProbesC10357
DAPIPromo KinePK-CA70740043
ALCAMR & D Systems656-ALECM
Cadherin-20 (CDH20)R & D Systems5604-CAECM
Cadherin-6 (CDH6)R & D Systems2715-CAECM
Cadherin-8 (CDH8)R & D Systems188-C8ECM
CD44R & D Systems3660-CDECM
CEACAM6R & D Systems3934-CMECM
Collagen ICultrex3442-050-01ECM
Collagen Type IIMilliporeCC052ECM
Collagen Type IIIMilliporeCC054ECM
Collagen Type IVSigmaC5533ECM
Collagen Type VMilliporeCC077ECM
COL23A1R & D Systems4165-CLECM
Desmoglein 2R & D Systems947-DMECM
E-cadherin (CDH1)R & D Systems648-ECECM
ECM1R & D Systems3937-ECECM
FibronectinR & D Systems1918-FNECM
GAP43Abcamab114188ECM
HyA-500KR & D SystemsGLR002ECM
HyA-50KR & D SystemsGLR001ECM
ICAM-1R & D Systems720-ICECM
LamininSigmaL6274ECM
Laminin-5Abcamab42326ECM
LumicanR & D Systems2846-LUECM
M-Cad (CDH15)R & D Systems4096-MCECM
Nidogen-1R & D Systems2570-NDECM
Osteoadherin/OSADR & D Systems2884-ADECM
Osteopontin (SPP)R & D Systems1433-OPECM
P-Cadherin (CDH3)R & D Systems861-PCECM
PECAM1R & D SystemsADP6ECM
Tenascin CR & D Systems3358-TCECM
VCAM1R & D SystemsADP5ECM
vitronectinR & D Systems2308-VNECM
BiglycanR & D Systems2667-CMECM
DecorinR & D Systems143-DEECM
PeriostinR & D Systems3548-F2ECM
SPARC/osteonectinR & D Systems941-SPECM
Thrombospondin-1/2R & D Systems3074-THECM
BrevicanR & D Systems4009-BCECM
ElastinBioMatrix5052ECM
FibrillinLynn Sakai Lab OHSUN/AECM
ANGPT2RnD_Systems_Own623-AN-025Ligand
IL1BRnD_Systems_Own201-LB-005Ligand
CXCL8RnD_Systems_Own208-IL-010Ligand
IGF1RnD_Systems_Own291-G1-200Ligand
TNFRSF11BRnD_Systems_Own185-OSLigand
BMP6RnD_Systems_Own507-BP-020Ligand
FLT3LGRnD_Systems_Own308-FK-005Ligand
CXCL1RnD_Systems_Own275-GR-010Ligand
DLL4RnD_Systems_Own1506-D4-050Ligand
HGFRnD_Systems_Own294-HGN-005Ligand
Wnt5aRnD_Systems_Own645-WN-010Ligand
CTGFLife_Technologies_OwnPHG0286Ligand
LEPRnD_Systems_Own398-LP-01MLigand
FGF2Sigma_Aldrich_OwnSRP4037-50UGLigand
FGF6RnD_Systems_Own238-F6Ligand
IL7RnD_Systems_Own207-IL-005Ligand
TGFB1RnD_Systems_Own246-LP-025Ligand
PDGFBRnD_Systems_Own220-BB-010Ligand
WNT10AGenemed_Own90009Ligand
PTNRnD_Systems_Own252-PL-050Ligand
BMP3RnD_Systems_Own113-BP-100Ligand
BMP4RnD_Systems_Own314-BP-010Ligand
TNFSF11RnD_Systems_Own390-TN-010Ligand
CSF2RnD_Systems_Own215-GM-010Ligand
BMP5RnD_Systems_Own615-BMC-020Ligand
DLL1RnD_Systems_Own1818-DL-050Ligand
NRG1RnD_Systems_Own296-HR-050Ligand
KNG1RnD_Systems_Own1569-PI-010Ligand
GPNMBRnD_Systems_Own2550-AC-050Ligand
CXCL12RnD_Systems_Own350-NS-010Ligand
IL15RnD_Systems_Own247-ILB-005Ligand
TNFRnD_Systems_Own210-TA-020Ligand
IGFBP3RnD_Systems_Own675-B3-025Ligand
WNT3ARnD_Systems_Own5036-WNP-010Ligand
PDGFABRnD_Systems_Own222-ABLigand
AREGRnD_Systems_Own262-AR-100Ligand
JAG1RnD_Systems_Own1277-JG-050Ligand
BMP7RnD_Systems_Own354-BP-010Ligand
TGFB2RnD_Systems_Own302-B2-010Ligand
VEGFARnD_Systems_Own293-VE-010Ligand
IL6RnD_Systems_Own206-IL-010Ligand
CXCL12RnD_Systems_Own351-FS-010Ligand
NRG1RnD_Systems_Own378-SMLigand
IGFBP2RnD_Systems_Own674-B2-025Ligand
SHHRnD_Systems_Own1314-SH-025Ligand
FASLGRnD_Systems_Own126-FL-010Ligand

References

  1. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21 (3), 309-322 (2012).
  2. Quail, D. F., Joyce, J. A. Microenvironmental regu....

Explore More Articles

MicroarrayMicroenvironmentTumorPhenotypeMEMA PlatformExtracellular MatrixMicroenvironment MicroarraysCollagenLigandCell CultureBlocking BufferPBSMCF7 Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved