Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to test glomerular permeability in mice using a highly sensitive, nonradioactive tracer. This method allows repetitive urine analyses with small urine volumes.

Abstract

The loss of albumin in urine (albuminuria) predicts cardiovascular outcome. Under physiological conditions, small amounts of albumin are filtered by the glomerulus and reabsorbed in the tubular system up until the absorption limit is reached. Early increases in pathological albumin filtration may, thus, be missed by analyzing albuminuria. Therefore, the use of tracers to test glomerular permselectivity appears advantageous. Fluorescently labeled tracer fluorescein isothiocyanate (FITC)-polysucrose (i.e., FITC-Ficoll), can be used to study glomerular permselectivity. FITC-polysucrose molecules are freely filtered by the glomerulus but not reabsorbed in the tubular system. In mice and rats, FITC-polysucrose has been investigated in models of glomerular permeability by using technically complex procedures (i.e., radioactive measurements, high-performance liquid chromatography [HPLC], gel filtration). We have modified and facilitated a FITC-polysucrose tracer-based protocol to test early and small increases in glomerular permeability to FITC-polysucrose 70 (size of albumin) in mice. This method allows repetitive urine analyses with small urine volumes (5 µL). This protocol contains information on how the tracer FITC-polysucrose 70 is applied intravenously and urine is collected via a simple urinary catheter. Urine is analyzed via a fluorescence plate reader and normalized to a urine concentration marker (creatinine), thereby avoiding technically complex procedures.

Introduction

Functional or structural defects within the glomerular filtration barrier increase glomerular permeability to albumin, resulting in the detection of albumin in the urine (albuminuria). Albuminuria predicts cardiovascular outcome and is an important marker for glomerular injury1. Even low levels of albuminuria, lying within the normal range, are associated with an increased cardiovascular risk1.

Under physiological conditions, albumin is filtered through the glomerulus and is almost completely reabsorbed in the tubular system2,3. In mic....

Protocol

The investigations were conducted according to the guidelines outlined in the Guide for Care and Use of Laboratory Animals (US National Institutes of Health Publication No. 85-23, revised 1996). All animal experiments were performed in accordance with the relevant institutional approvals (state government Landesamt für Natur, Umwelt und Verbraucherschutz [LANUV] reference number 84-02.04.2012.A397).

1. Preparation of instruments, solutions, and equipment

  1. Reconstitute FITC-poly.......

Representative Results

As depicted in Figure 2, the method to test glomerular permeability in mice is built up in three phases. The first phase is called the preparation phase, in which a urinary catheter and a central venous catheter are placed. The second phase is called the equilibration phase, starting with an intravenous bolus injection of FITC-polysucrose 70 and followed by the continuous infusion of FITC-polysucrose 70 for 60 min. The last phase is called the experimental ph.......

Discussion

The presented method enables the investigator to test glomerular permeability in mice in a very sensitive manner using a tracer. With this method, short-term increases in glomerular permeability can be diagnosed using only small amounts of urine. The most critical steps for successfully mastering this technique are 1) developing manual expertise in mouse surgery, especially in the cannulation of a central vein, 2) placing the urinary catheter without harming the mucosa, and 3) manual expertise in handling 384-well plates.......

Acknowledgements

The authors thank Christina Schwandt, Blanka Duvnjak, and Nicola Kuhr for their exceptional technical assistance and Dr. Dennis Sohn for his help with the fluorescence scan.This research was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) SFB 612 TP B18 to L.C.R. and L.S. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

....

Materials

NameCompanyCatalog NumberComments
Motic SMZ168 BLMoticSMZ168BLmicroscope for mouse surgery
KL1500LCDPulch and Lorenz microscopy150500light for mouse surgery
MicrofederschereBraun, AesculapFD100Rfine scissors
Durotip Feine ScherenBraun, AesculapBC210Rfor neck cut
Anatomische PinzetteBraun, AesculapBD215Rfor surgery 
PräparierklemmeAesculapBJ008Rfor surgery 
SeraflexSerag WiessnerIC108000silk thread
Ketamine 10%Medistaranesthesia
Rompun (Xylazin) 2%Bayeranesthesia
Fine Bore Polythene Tubing ID 0.28mm OD 0.61mmPortex800/100/100Catheter
Fine Bore Polythene Tubing ID 0.58mm OD 0.96mmPortex800/100/200Catheter
Harvard apparatus 11 PlusHarvard Apparatus70-2209syringe pump
BD Insyte AutoguardBD381823 urinary catheter
Multimode Detector DTX 880Beckman Coulterplate reader
384 well microtiterplateNunc262260384 well platte
Creatinine Assay KitSigma-AldrichMAK080to measure creatinine concentration
96 well plateNunc260836for creatinine assay 
FITC-labeled polysuccrose 70TBD ConsultancyFP70FITC-ficoll
Angiotensin IISigma-AldrichA9525used to test glomerular permeability
BP-98ASoftronfor blood pressure measurement
OTS 40.3040Medite01-4005-00heating plate for mouse surgery
Instillagel 6mLFarco-Pharma GmbHfor urinary catheter
ExactaAesculapGT415shaver

References

Explore More Articles

Glomerular PermeabilityFluorescein Isothiocyanate polysucrose 70NephrologyKidney DiseaseAnesthesiaUrinary CatheterJugular VeinLigatureFluorescent Tracer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved