Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We show how to encode the complex field of laser beams by using a single phase element. A common-path interferometer is employed to mix the phase information displayed into a phase-only spatial light modulator to finally retrieve the desired complex field pattern at the output of an optical imaging system.

Abstract

The aim of this article is to visually demonstrate the utilization of an interferometric method for encoding complex fields associated with coherent laser radiation. The method is based on the coherent sum of two uniform waves, previously encoded into a phase-only spatial light modulator (SLM) by spatial multiplexing of their phases. Here, the interference process is carried out by spatial filtering of light frequencies at the Fourier plane of certain imaging system. The correct implementation of this method allows arbitrary phase and amplitude information to be retrieved at the output of the optical system.

It is an on-axis, rather than off-axis encoding technique, with a direct processing algorithm (not an iterative loop), and free from coherent noise (speckle). The complex field can be exactly retrieved at the output of the optical system, except for some loss of resolution due to the frequency filtering process. The main limitation of the method might come from the inability to operate at frequency rates higher than the refresh rate of the SLM. Applications include, but are not limited to, linear and non-linear microscopy, beam shaping, or laser micro-processing of material surfaces.

Introduction

Almost all laser applications are in close relation with the management of the optical wavefront of light. In the paraxial approximation, the complex field associated with the laser radiation can be described by two terms, the amplitude and the phase. Having control over these two terms is necessary to modify both the temporal and the spatial structure of laser beams at will. In general, the amplitude and the phase of a laser beam can be properly changed by several methods including the use of optical components that range from single bulk lenses, beam splitters and mirrors to most complex devices like deformable mirrors or spatial light modulators. Here, we show a me....

Protocol

1. Encoding the Complex Field into a Single Phase Element

  1. From the technical specifications of the SLM, find its spatial resolution (for instance 1920 pixels x 1800 pixels).
  2. Define and generate the desired amplitude A(x,y) and phase φ(x,y) patterns as digital images.
    1. Set the spatial resolution of abovementioned digital images equal to that of the SLM display.
    2. Set abovementioned digital images in gray level format.
    3. .......

Representative Results

The spatial resolution of the employed phase-only SLM is 1920 pixels x 1080 pixels, with a pixel pitch of 8 µm. The selected amplitude A(x,y) and phase φ(x,y) of the complex field are defined by two different gray level images corresponding to the well-known Lenna’s picture (amplitude pattern) and a young girl sticking out her tongue (phase pattern), respectively. In general, for both, the generation of necessary patter.......

Discussion

In this protocol, practical parameters as the pixel width of the phase-only SLM or the number of pixels contained within pixel cells of a computer-generated pattern are key points to successfully implement the encoding method. In steps 1.2, 1.3, and 1.4 of the protocol, the shorter the pixel width, the better the spatial resolution of the retrieved amplitude and phase patterns. In addition, as the codification into the SLM of abrupt pixel-to-pixel phase modulations can originate unexpected phase responses (pixel crosstal.......

Acknowledgements

This research was supported by Generalitat Valenciana (PROMETEO 2016-079), Universitat Jaume I (UJI) (UJIB2016-19); and Ministerio de Economía y Competitividad (MINECO) (FIS2016-75618-R). The authors are very grateful to the SCIC of the Universitat Jaume I for the use of the femtosecond laser.

....

Materials

NameCompanyCatalog NumberComments
Achromatic DoubletTHORLABSAC254-100-B-MLLens Diameter 25.4 mm, focal length 100 mm
Achromatic Galilean Beam ExpanderTHORLABSGBE05-AAR Coated: 400 - 650 nm
Basler cameraBASLERavA1600-50gm GigE camerasensor size 8.8 mm x 6.6 mm, pizel size 5.5 microns
Mounted Zero-Aperture IrisTHORLABSID12Z/MMax Aperture 12 mm
Pellicle BeamsplitterTHORLABSCM1-BP145B245:55 (R:T), Coating: 700 - 900 nm
PLUTO Spatial Light ModulatorHOLOEYE Photonics AGNIR-IIPhase Only Spatial Light Modulator (Optimized for 700 -1000 nm)
Two thin film laser polarizersEKSMA OPTICS420-0526Mmaterial BK7, diameter 50 mm, wavelength 780-820 nm

References

  1. Hsueh, C. K., Sawchuk, A. A. Computer-generated double-phase holograms. Applied Optics. 17 (24), 3874-3883 (1978).
  2. Arrizón, V. Complex modulation with a twisted-nematic liquid-crystal spatial light modu....

Explore More Articles

Laser Beam ShapingPhase only Spatial Light ModulatorBeam EncodingAmplitude And Phase ControlSpatial Light Modulator SetupOptical Image SystemCCD CameraBeam SplitterCollimated Laser Beam

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved