Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol demonstrates injection of a retrogradely transportable viral vector into rat spinal cord tissue. The vector is taken up at the synapse and transported to the cell body of target neurons. This model is suitable for retrograde tracing of important spinal pathways or targeting cells for gene therapy applications.

Abstract

Introducing proteins of interest into cells in the nervous system is challenging due to innate biological barriers that limit access to most molecules. Injection directly into spinal cord tissue bypasses these barriers, providing access to cell bodies or synapses where molecules can be incorporated. Combining viral vector technology with this method allows for introduction of target genes into nervous tissue for the purpose of gene therapy or tract tracing. Here a virus engineered for highly efficient retrograde transport (HiRet) is introduced at the synapses of propriospinal interneurons (PNs) to encourage specific transport to neurons in the spinal cord and brainstem nuclei. Targeting PNs takes advantage of the numerous connections they receive from motor pathways such as the rubrospinal and reticulospinal tracts, as well as their interconnection with each other throughout spinal cord segments. Representative tracing using the HiRet vector with constitutively active green fluorescent protein (GFP) shows high fidelity details of cell bodies, axons and dendritic arbors in thoracic PNs and in reticulospinal neurons in the pontine reticular formation. HiRet incorporates well into brainstem pathways and PNs but shows age dependent integration into corticospinal tract neurons. In summary, spinal cord injection using viral vectors is a suitable method for introduction of proteins of interest into neurons of targeted tracts.

Introduction

Viral vectors are important biological tools that can introduce genetic material into cells in order to compensate for defective genes, upregulate important growth proteins or manufacture marker proteins that highlight the structure and synaptic connections of their targets. This article focuses on direct injection of a highly efficient retrogradely transportable lentiviral vector into the rat spinal cord in order to highlight major motor pathways with fluorescent tracing.  This method is also highly appropriate for axonal regeneration and regrowth studies to introduce proteins of interest into diverse populations of neurons and has been used to silence neurons f....

Protocol

All of the following surgical and animal care procedures have been approved by the Animal Care and Use Committee of Temple University.

1. Pre-surgical preparations

  1. Prepare pulled glass needles for viral injection a few days before surgery using 3.5 nanoliter glass capillary pipettes designed for nanoliter injectors. Pull each pipette on a two-step needle puller according to the manufacturer’s instructions to create two needle templates.
  2. Refine the tip of the needle .......

Representative Results

Successful injection and transport of the viral vector should result in transduction of a robust population of unilateral neurons in the spinal cord and in certain brainstem nuclei. Figure 1 demonstrates stereotypical labeling of neurons and axons in the thoracic spinal cord and in the pontine reticular formation of the brainstem at four weeks post-injection. Significant GFP expression is seen in neurons in the gray matter of the thoracic spinal cord on the side ipsilater.......

Discussion

Genetic manipulation of neurons in the brain and spinal cord has served to highlight sensory, motor and autonomic pathways via fluorescent tracing and to explore regrowth potential of neuronal tracts after injury27,28,29,30,31,32,33. Direct injection of a retrogradely transportable viral vec.......

Acknowledgements

This work was funded by a grant from the National Institute of Neurological Disorders and Stroke R01 R01NS103481 and the Shriners Hospital for Pediatric Research grants SHC 84051 and SHC 86000 and the Department of Defense (SC140089).

....

Materials

NameCompanyCatalog NumberComments
#10 Scalpel BladesRobozRS-9801-10For use with the scalpel.
1 mL SyringesBecton, Dickinson and Company309659For anesthetic IP injection, potential anesthetic booster shots, and antibiotic injections.
10mL SyringesBecton, Dickinson and Company309604For injecting saline into the animal, post-surgery.
4.0 Chromic Catgut SutureDemeTECHNN374-16To re-bind muscle during closing.
48000 Micropipette BevelerWorld Precision Instruments32416Used to bevel the tips of the pulled glass capillary tubes to form functional glass needles.
5% Iodine SolutionPurdue Products L.P.L01020-08For use in sterilzation of the surgical site.
70% EthanolN/AN/AFor sterilization of newly prepared glass needles, animal models during surgical preparation, and surgeon's hands during surgery, as well as all other minor maintainances of sterility.
Anesthetic (Ketamine/Xylazine Solution)Zoetis240048For keeping the animal in the correct plane of consciousness during surgery.
Antibiotic (Cefazolin)West-Ward PharmaceuticalsNPC 0143-9924-90To be injected subcutaneously to prevent infection post-surgery.
Bead SterilizerCellPoint5-1450To heat sterilize surgical instruments.
BonewaxFine Science Tools19009-00To seal up bone in the case of bone bleeding.
CauterizerFine Science Tools18010-00To seal any arteries or veins severed during surgery to prevent excessive blood loss.
Digital ScaleOkausREV.005For weighing the animal during surgical preparation.
Flexible Needle AttachmentWorld Precision InstrumentsMF34G-5For cleaning glass needles and loading red oil into glass needles.
GelfoamPfizerH68079To seal up bone in the case of bone bleeding.
Glass Capillary TubesWorld Precision Instruments4878For pulled glass needles - should be designed for nanoliter injectors.
Hair ClippersOster111038-060-000For clearing the surgical site of hair.
HemostatsRobozRS-7231For general use in surgery.
KimwipesKimtech34155For general use in surgery.
Medium Point Curved ForcepsRobozRS-5136For general use in surgery.
Micromanipulator with a Vernier ScaleKanetecN/AFor precise targeting during surgery.
MicroscissorsRobozRS-5621For cutting glass whisps off of freshly pulled glass capillary tubes.
Microscope with Light and Vernier Scale OcularLeitz WetzlarN/AUsed to visualize and measure beveling of pulled glass capillary tubes into functional glass needles.
MicroSyringe Pump ControllerWorld Precision Instruments62403To control the rate of injection.
Nanoliter 2000 Pump Head InjectorWorld Precision Instruments500150To load and inject virus in a controlled fashion.
Needle PullerNarishigePC-100To heat and pull apart glass capillary tubes to form glass needles.
Ophthalamic OintmentDechra Veterinary ProductsRAC 0119To protect the animal's eyes during surgery.
ParafilmBemisPM-996To assist with loading virus into the nanoinjector.
PrecisionGlide Needles (25G x 5/8)Becton, Dickinson and Company305122For use with the 1mL and 10 mL syringes to allow injection of the animal model.
Rat Tooth ForcepsRobozRS-5152For griping spinous processes.
Red OilN/AN/ATo provide a front for visualization of virus entering tissue during injection.
RetractorsRobozRS-6510To hold open the surgical wound.
Rimadyl TabletsBio ServMP275-050For pain management post-surgery.
RongeursRobozRS-8300To remove muscle from the spinal column during surgery.
Scalpel Blade HandleRobozRS-9843To slice open skin and fat pad of animal model during surgery.
ScissorsRobozRS-5980For general use in surgery.
Stainless Steal Wound ClipsCellPoint201-1000To bind the skin of the surgical wound during closing.
Staple Removing ForcepsKent ScientificINS750347To remove the staples, should they be applied incorrectly.
Sterile ClothPhenix Research ProductsBP-989To provide a sterile surface for the operation.
Sterile Cotton-Tipped ApplicatorsPuritan806-WCTo soak up blood in the surgical wound while maintaining sterility.
Sterile GauzeCovidien2146To clean the surgical area and surgical tools while maintaining sterility.
Sterile SalineBaxter Healthcare Corporation281324For use in blood clearing, and for replacing fluids post-surgery.
Surgical GlovesN/AN/AFor use by the surgeon to maintain sterile field during surgery.
Surgical Heating PadN/AN/AFor maintaining the body temperature of the animal model during surgery.
Surgical MicroscopeN/AN/AFor enhanced visualization of the surgical wound.
Surgical StaplerKent ScientificINS750546To apply the staples.
T/Pump Heat Therapy Water PumpGaymarTP500CTo pump warm water into the water convection warming pad.
Water Convection Warming PadBaxter Healthcare CorporationL1K018For use in the post-operational recovery area to maintain the body temperature of the unconscious animal.
Weighted HooksN/AN/ATo hold open the surgical wound.

References

Explore More Articles

Lentiviral VectorSpinal CordMotor PathwaysViral VectorGenetic MaterialNeural CircuitsDirect InjectionL1 To L4 Spinal LevelsMicromanipulatorAnesthetized RatSkin IncisionSpinous ProcessesRat Tooth Forceps

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved