A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Developmental Biology
Caenorhabditis elegans (C. elegans), a free-living nematode, has emerged as an attractive model to study host-pathogen interactions. The presented protocol uses this model to determine the pathogenicity caused by the mitis group streptococci via the production of H2O2. The mitis group streptococci are an emerging threat that cause many human diseases such as bacteremia, endocarditis, and orbital cellulitis. Described here is a protocol to determine the survival of these worms in response to H2O2 produced by this group of pathogens. Using the gene skn-1 encoding for an oxidative stress response transcription factor, it is shown that this model is important for identifying host genes that are essential against streptococcal infection. Furthermore, it is shown that activation of the oxidative stress response can be monitored in the presence of these pathogens using a transgenic reporter worm strain, in which SKN-1 is fused to green fluorescent protein (GFP). These assays provide the opportunity to study the oxidative stress response to H2O2 derived by a biological source as opposed to exogenously added reactive oxygen species (ROS) sources.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved