A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Este artículo describe el crecimiento de películas epitaxiales de Mg3N2 y Zn3N2 en sustratos de MgO por epitaxiía de haz molecular asistida por plasma con gas N2 como fuente de nitrógeno y monitoreo óptico del crecimiento.

Abstract

Este artículo describe un procedimiento para el cultivo de películas Mg3N2 y Zn3N2 por epitaxía de haz molecular asistido por plasma (MBE). Las películas se cultivan en 100 sustratos MgO orientados con n2 gas como fuente de nitrógeno. Se describe el método para preparar los sustratos y el proceso de crecimiento de MBE. La orientación y el orden cristalino del sustrato y la superficie de la película son monitoreados por la reflexión de difracción de electrones de alta energía (RHEED) antes y durante el crecimiento. La reflectividad especular de la superficie de la muestra se mide durante el crecimiento con un láser Ar-ion con una longitud de onda de 488 nm. Al ajustar la dependencia temporal de la reflectividad a un modelo matemático, se determinan el índice de refracción, el coeficiente de extinción óptica y la tasa de crecimiento de la película. Los flujos metálicos se miden independientemente en función de las temperaturas celulares de derrame utilizando un monitor de cristal de cuarzo. Las tasas de crecimiento típicas son de 0,028 nm/s a temperaturas de crecimiento de 150 oC y 330 oC para películas Mg3N2 y Zn3N2, respectivamente.

Introduction

Los materiales II3-V2 son una clase de semiconductores que han recibido relativamente poca atención de la comunidad de investigación de semiconductores en comparación con los semiconductores III-V y II-VI1. Los nitruros Mg y Zn, Mg3N2 y Zn3N2,son atractivos para aplicaciones de consumo porque están compuestos de elementos abundantes y no tóxicos, haciéndolos baratos y fáciles de reciclar a diferencia de la mayoría de III-V y II-VI semiconductores compuestos. Muestran una estructura de cristal anti-bixbyita similar a la estructura CaF2, con uno de los f-sublattices fcc ....

Protocol

1. Preparación del sustrato de MgO

NOTA: Para el crecimiento de la película delgada X3N2 (X - Zn y Mg) se emplearon sustratos cuadrados de cristal único orientados a un lado (100) (1 cm x 1 cm).

  1. Recocido de alta temperatura
    1. Coloque el MgO en un portamuestras de obleas de zafiro limpio con el lado pulido orientado hacia arriba en un horno y recocido durante 9 h a 1.000 oC. Elevar la temperatura a 1000 oC durante un período de 10 minutos.
      NOTA: El recocido de alta temperatura elimina el carbono de la superficie y reconstruye la estructura de cristal de la superficie de los sustratos de cri....

Representative Results

El objeto negro en el recuadro en la Figura 5B es una fotografía de una película delgada de 200 nm Zn3N2. Del mismo modo, el objeto amarillo en el recuadro en la Figura 5C es una película delgada de 220 nm Mg3N2 cultivada. La película amarilla es transparente en la medida en que es un texto fácil de leer colocado detrás de la película10.

Discussion

Una variedad de consideraciones está involucrada en la elección de sustratos y el establecimiento de las condiciones de crecimiento que optimizan las propiedades estructurales y electrónicas de las películas. Los sustratos de MgO se calientan a alta temperatura en el aire (1000 oC) para eliminar la contaminación por carbono de la superficie y mejorar el orden cristalino en la superficie del sustrato. La limpieza ultrasónica en acetona es un buen método alternativo para limpiar los sustratos de MgO.

Disclosures

Los autores no tienen nada que revelar.

Acknowledgements

Este trabajo fue apoyado por el Consejo de Investigación de Ciencias Naturales e Ingeniería de Canadá.

....

Materials

NameCompanyCatalog NumberComments
(100) MgOUniversity Wafer214018one side epi-polished
AcetoneFisher Chemical 17023999.8%
Argon laserLexel Laser00-137-124488 nm visible wavelength, 350 mW output power
Chopper Stanford Research system SR540 Max. Frequency: 3.7 kHz 
Lock-in amplifier Stanford Research system 37909DSP SR810, Max. Frequency: 100 kHz 
Magnesium UMCMG6P599.9999%
MBE systemVG SemiconV80H0016-2 SHT 1V80H-10
Methanol Alfa AesarL30U027Semi-grade 99.9%
NitrogenPraxair40221950199.998%
Oxygen Linde Gas200-14-00067> 99.9999%
Plasma sourceSVT AssociatesSVTA-RF-4.5PBNPBN, 0.11" Aperture, Specify Length: 12" – 20"
Si photodiode Newport2718818-UV Enhanced, 200 - 1100 nm
Zinc Alfa Aesar7440-66-699.9999%

References

  1. Suda, T., Kakishita, K. Band-gap energy and electron effective mass of polycrystalline Zn3N2. Journal of Applied Physics. 99 (7), 076101.1-076101.3 (2006).
  2. Hu, J., Bando, Y., Zhan, J., Zhi, C., Golberg, D.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Ingenier aN mero 147epitasa de haz molecular asistida por plasmaII3 V2 semiconductoresZn3N2Mg3N2monitoreo de crecimiento pticoc lulas de derrame de metal

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved