JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Bioengineering

High-resolution Imaging of Nuclear Dynamics in Live Cells under Uniaxial Tensile Strain

Published: June 2nd, 2019

DOI:

10.3791/59474

1BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, 2Department of Material Science and Engineering, Massachusetts Institute of Technology, 3Department of Biological Engineering, Massachusetts Institute of Technology

Abstract

Extracellular mechanical strain is known to elicit cell phenotypic responses and has physiological relevance in several tissue systems. To capture the effect of applied extracellular tensile strain on cell populations in vitro via biochemical assays, a device has previously been designed which can be fabricated simply and is small enough to fit inside tissue culture incubators, as well as on top of microscope stages. However, the previous design of the polydimethylsiloxane substratum did not allow high-resolution subcellular imaging via oil-immersion objectives. This work describes a redesigned geometry of the polydimethylsiloxane substratum and a customized imaging setup that together can facilitate high-resolution subcellular imaging of live cells while under applied strain. This substratum can be used with the same, earlier designed device and, hence, has the same advantages as listed above, in addition to allowing high-resolution optical imaging. The design of the polydimethylsiloxane substratum can be improved by incorporating a grid which will facilitate tracking the same cell before and after the application of strain. Representative results demonstrate high-resolution time-lapse imaging of fluorescently labeled nuclei within strained cells captured using the method described here. These nuclear dynamics data give insights into the mechanism by which applied tensile strain promotes differentiation of oligodendrocyte progenitor cells. 

Explore More Videos

Keywords High resolution Imaging

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved