A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The following procedure describes a method for spatial and temporal control of melanocytic tumor initiation in murine dorsal skin, using a genetically engineered mouse model. This protocol describes macroscopic as well as microscopic cutaneous melanoma initiation.

Abstract

Cutaneous melanoma is well known as the most aggressive skin cancer. Although the risk factors and major genetic alterations continue to be documented with increasing depth, the incidence rate of cutaneous melanoma has shown a rapid and continuous increase during recent decades. In order to find effective preventative methods, it is important to understand the early steps of melanoma initiation in the skin. Previous data has demonstrated that follicular melanocyte stem cells (MCSCs) in the adult skin tissues can act as melanoma cells of origin when expressing oncogenic mutations and genetic alterations. Tumorigenesis arising from melanoma-prone MCSCs can be induced when MCSCs transition from a quiescent to active state. This transition in melanoma-prone MCSCs can be promoted by the modulation of either hair follicle stem cells' activity state or through extrinsic environmental factors such as ultraviolet-B (UV-B). These factors can be artificially manipulated in the laboratory by chemical depilation, which causes transition of hair follicle stem cells and MCSCs from a quiescent to active state, and by UV-B exposure using a benchtop light. These methods provide successful spatial and temporal control of cutaneous melanoma initiation in the murine dorsal skin. Therefore, these in vivo model systems will be valuable to define the early steps of cutaneous melanoma initiation and could be used to test potential methods for tumor prevention.

Introduction

Melanoma, the malignant form of melanocytic tumors, is the most aggressive cancer in the skin with cutaneous melanoma responsible for the majority of skin cancer deaths1. In the United States, melanoma is commonly diagnosed; it is projected to be the 5th to 6th most common cancer type among the estimated new cancer cases in 20182. Furthermore, while overall cancer incidences have shown the trend of gradual reduction in recent decades, cutaneous melanoma incidence rates during the last few decades demonstrate a continuous and rapid increase in both genders2.

Protocol

All animal procedures are performed in accordance with Cornell University Institutional Animal Care and Use Committee (IACUC).

1. Preparation

  1. Collect tail clips from 12 day postnatal mice and digest in 400 µL of 0.05 N NaOH at 95 °C for 1 h. Vortex and add 32 µL of 1 M Tris-HCl, pH 7. Genotype mice according to PCR protocols provided through the Jackson Laboratory and identify mice with genotype of interest6.
    - Tyr-CreER – hemizygous (+/CreER)
    - LSL-BrafV600Eheterozygous (+/LSL-V600E)
    - Pten – <....

Results

Cutaneous melanoma initiation induced by chemical depilation

The procedure of chemical depilation is depicted in Figure 2. When mice are 7-weeks postnatal, their dorsal skin is in telogen. During telogen, hair follicle stem cells and MCSCs are known to be in a quiescent, resting state. The skin should show no significant hair growth after shaving. On the other hand, chemical de.......

Discussion

Hallmark genetic alterations frequently found in cutaneous melanoma tumors have been well described13. The most dominant driver mutation is BrafV600E, and a genetically engineered mouse model for BrafV600E-mediated melanoma was generated by the Bosenberg group14 and deposited in the Jackson Laboratory. Using this mouse model, our recent study demonstrated the requirement of cellular activation of tumor-prone MCSCs for the significant .......

Disclosures

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Peer Reviewed Cancer Research Program under award W81XWH-16-1-0272. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense. This work was also supported by a seed grant from the Cornell Stem Cell Program to A.C. White. H. Moon was supported by the Cornell Center for Vertebrate Genomics Scholar Program.

....

Materials

NameCompanyCatalog NumberComments
TamoxifenSigmaT5648-1GFor systemic injection
TamoxifenCayman Chemical13258For systemic injection
Corn oilSigma45-C8267-2.5L-EA
4OH-tamoxifenSigmaH7904-25MGFor topical treatment
26g 1/2" needlesvariousVeterinary grade
1 mL syringevariousVeterinary grade
Pet hair trimmerWahl09990-502
Hair removal creamNairn/aAvailable at most drug stores
Cotton swabsvarious
Ultraviolet light bulbUVP95-0042-08model XX-15M midrange UV lamp
200 proof ethanolvariouspure ethanol
Histoplast PEFisher Scientific22900700paraffin pellets
Neutral Buffered Formalin, 10%SigmaHT501128-4L
Clear-Rite 3Thermo Scientific6901xylene substitute
O.C.T. CompoundThermo23730571
Tissue CassetteSakura89199-430for FFPE processing
CryomoldsSakura455725 x 20 mm
FFPE metal moldLeica380308224 x 24 mm
IsofluranevariousVeterinary grade
Anesthesia inhalation systemvariousVeterinary grade
Fine scissorFST14085-09Straight, sharp/sharp
Fine scissorFST14558-09Straight, sharp/sharp
MetzenbaumFST14018-13Straight, blunt/blunt
ForcepFST11252-00Dumont #5
ForcepFST11018-12Micro-Adson
Tyr-CreER; LSL-BrafV600E; Pten-f/fJackson Labs13590
LSL-tdTomatoJackson Labs007914ai14
Cre-1n/aGCATTACCGGTCGATGCAACGAGTGATGAG
Cre-2n/aGAGTGAACGAACCTGGTCGAAATCAGTGCG
Braf-V600E-1n/aTGAGTATTTTTGTGGCAACTGC
Braf-V600E-2n/aCTCTGCTGGGAAAGCGGC
Kras-G12D-1n/aAGCTAGCCACCATGGCTTGAGTAAGTCTGCA
Kras-G12D-2n/aCCTTTACAAGCGCACGCAGACTGTAGA
Pten-1n/aACTCAAGGCAGGGATGAGC
Pten-2n/aAATCTAGGGCCTCTTGTGCC
Pten-3n/aGCTTGATATCGAATTCCTGCAGC
tdTomato-1n/aAAGGGAGCTGCAGTGGAGTA
tdTomato-2n/aCCGAAAATCTGTGGGAAGTC
tdTomato-3n/aGGCATTAAAGCAGCGTATCC
tdTomato-4n/aCTGTTCCTGTACGGCATGG

References

  1. Wernli, K. J., Henrikson, N. B., Morrison, C. C., Nguyen, M., Pocobelli, G., Blasi, P. R. Screening for skin cancer in adults: updated evidence report and systematic review for the US preventive services task force. The Journal of the American Medical Association. 316 (4), 436-447 (2016).
  2. Siegel, R. L., Miller, K. D., Jemal, A.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

MelanomaMelanocyte Stem CellsUV B IrradiationSkin SamplesExperimental ProcedureTissue IsolationCancer ResearchDepilatory CreamAnimal MonitoringLaboratory MethodsSkin Tissue CollectionFormalin Fixation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved