A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Galleria mellonella was recently established as a reproducible, cheap, and ethically acceptable infection model for the Mycobacterium tuberculosis complex. Here we describe and demonstrate the steps taken to establish successful infection of G. mellonella with bioluminescent Mycobacterium bovis BCG lux.
Tuberculosis is the leading global cause of infectious disease mortality and roughly a quarter of the world’s population is believed to be infected with Mycobacterium tuberculosis. Despite decades of research, many of the mechanisms behind the success of M. tuberculosis as a pathogenic organism remain to be investigated, and the development of safer, more effective antimycobacterial drugs are urgently needed to tackle the rise and spread of drug resistant tuberculosis. However, the progression of tuberculosis research is bottlenecked by traditional mammalian infection models that are expensive, time consuming, and ethically challenging. Previously we established the larvae of the insect Galleria mellonella (greater wax moth) as a novel, reproducible, low cost, high-throughput and ethically acceptable infection model for members of the M. tuberculosis complex. Here we describe the maintenance, preparation, and infection of G. mellonella with bioluminescent Mycobacterium bovis BCG lux. Using this infection model, mycobacterial dose dependent virulence can be observed, and a rapid readout of in vivo mycobacterial burden using bioluminescence measurements is easily achievable and reproducible. Although limitations exist, such as the lack of a fully annotated genome for transcriptomic analysis, ontological analysis against genetically similar insects can be carried out. As a low cost, rapid, and ethically acceptable model for tuberculosis, G. mellonella can be used as a pre-screen to determine drug efficacy and toxicity, and to determine comparative mycobacterial virulence prior to the use of conventional mammalian models. The use of the G. mellonella-mycobacteria model will lead to a reduction in the substantial number of animals currently used in tuberculosis research.
Tuberculosis (TB) is a major threat to global public health with 9 million new cases per year and 1.5 million deaths1. In addition, it is estimated that one quarter of the world’s population is infected with the causative agent of the disease, Mycobacterium tuberculosis (Mtb). Amongst the infected population, 5−10% will develop active TB disease over their lifetime. Furthermore, the emergence and spread of multi-drug resistant (MDR) and extensively-drug (XDR) resistant Mtb poses a serious threat to disease control, with 123 countries reporting at least one XDR case1. Treatment of TB req....
NOTE: All work described below are to be carried out in a CL2 laboratory within a class 2 microbiological safety cabinet (MSC) following local health and safety guidelines.
1. Preparation of M. bovis BCG lux for Infection
Here we present representative data that can be obtained using the G. mellonella — BCG lux infection model and highlight the benefits of G. mellonella as an infection model for members of the MTBC (Figure 1). Experimental procedures with key technical points are outlined in Figure 2.
The use of G. mellonella as an infection model has been established for a number of bacterial and fungal pathogens for the study of virulence, host-pathogen interaction, and as a screen for novel therapeutics10,22. The following discussion is based on the experimental procedure for the use of G. mellonella as an infection model for the MTBC.
The health of the naïve larvae prior to experimentation c.......
This project was supported by grants from the Biotechnology and Biological Science Research Council (BBSRC), awarded to PRL and YL (BB/P001262/1), and the National Center for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) awarded to PRL, SMN, BDR, and YL (NC/R001596/1).
....Name | Company | Catalog Number | Comments |
1.5ml reaction tube (Eppendorf) | Eppendorf | 22431021 | |
20, 200 and 1000 µl pipette and filtered tips | Any supplier | n/a | |
24 well culture plate | Greiner | 662160 | |
25 ml pipettes and pipette boy | Any supplier | n/a | |
3 compartment Petri dish (94/15mm) | Greiner | 637102 | |
Centrifuge | Any supplier | n/a | |
Class II saftey cabinet | Any supplier | n/a | |
Erlenmeyer flask with vented cap (250 ml) | Corning | CLS40183 | |
Ethanol (>99.7%) | VWR | 208221.321 | |
Galleria mellonella (250 per pk) | Livefood Direct UK | W250 | |
Glycerol | Sigma-Aldrich | G5150 | |
Homogeniser (FastPrep-24 5G ) | MP Biomedicals | 116005500 | |
Hygromycin B | Corning | 30-240CR | |
Luminometer (Autolumat LB 953) | Berthold | 34622 | |
Luminometer tubes | Corning | 352054 | |
Lysing matrix (S, 2.0ml) | MP Biomedicals | 116925500 | |
Micro syringe (25 µl, 25 ga) | SGE | 3000 | |
Microcentrifuge | Any supplier | n/a | |
Middlebrook 7H11 agar | BD Bioscience | 283810 | |
Middlebrook 7H9 broth | BD Bioscience | 271310 | |
Middlebrook ADC enrichment | BD Bioscience | 212352 | |
Middlebrook OADC enrichment | BD Bioscience | 212240 | |
Mycobacterium bovis BCG lux | Various | n/a | |
n-decyl aldehyde | Sigma-Aldrich | D7384-100G | |
Orbital shaking incubator | Any supplier | n/a | |
Phosphate buffered saline | Sigma-Aldrich | P4417-100TAB | |
Polysorbate 80 (Tween-80) | Sigma-Aldrich | P8074-500ml | |
Small box | Any supplier | n/a | dark vented or non-sealed box recommended |
Tweezer | Any supplier | n/a | Short and narrow tipped/Blunt long tweezers |
Winterm (V1.08) | Berthold | n/a | Program LB953.TTB |
Petri dish (94/15mm) | Greiner | 633181 | |
Filter paper (94mm) | Any supplier | n/a | Cut to fit |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved