A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Immunology and Infection
* These authors contributed equally
Tuberculosis is the leading global cause of infectious disease mortality and roughly a quarter of the world’s population is believed to be infected with Mycobacterium tuberculosis. Despite decades of research, many of the mechanisms behind the success of M. tuberculosis as a pathogenic organism remain to be investigated, and the development of safer, more effective antimycobacterial drugs are urgently needed to tackle the rise and spread of drug resistant tuberculosis. However, the progression of tuberculosis research is bottlenecked by traditional mammalian infection models that are expensive, time consuming, and ethically challenging. Previously we established the larvae of the insect Galleria mellonella (greater wax moth) as a novel, reproducible, low cost, high-throughput and ethically acceptable infection model for members of the M. tuberculosis complex. Here we describe the maintenance, preparation, and infection of G. mellonella with bioluminescent Mycobacterium bovis BCG lux. Using this infection model, mycobacterial dose dependent virulence can be observed, and a rapid readout of in vivo mycobacterial burden using bioluminescence measurements is easily achievable and reproducible. Although limitations exist, such as the lack of a fully annotated genome for transcriptomic analysis, ontological analysis against genetically similar insects can be carried out. As a low cost, rapid, and ethically acceptable model for tuberculosis, G. mellonella can be used as a pre-screen to determine drug efficacy and toxicity, and to determine comparative mycobacterial virulence prior to the use of conventional mammalian models. The use of the G. mellonella-mycobacteria model will lead to a reduction in the substantial number of animals currently used in tuberculosis research.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved