サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

一般的な銅ベースの photoredox 触媒である [(DPEPhos) (bcp) Cu] PF6を合成するための詳細かつ一般的なプロトコールと、arylation (ヘテロ) arenes およびラジカルによる直接結合に対する合成化学の使用有機ハロゲン化物の環化。

要約

私たちのグループは最近、通例のものを含む多種多様な有機ハロゲン化物の活性化を促進するために効率的であることが証明された一般的な銅ベースの photoredox 触媒として [(DPEPhos) (bcp) Cu] PF6の使用を報告しました。これらは、その後、減少および環化反応、ならびにいくつかの (ヘテロ) arenes の直接 arylation などの様々なラジカル変換に参加することができる。これらの変換は、生物学的に活性な天然物に加えて、合成化学に関心のある小さな分子の範囲への簡単なアクセスを提供します。全体として、[(DPEPhos) (bcp) Cu] PF6は、最先端のイリジウム及びルテニウム系 photoredox 触媒に対する魅力的で安価で相補的な代替物であると思われる簡便な photoredox 触媒として作用する。ここでは、「(DPEPhos) (bcp) Cu」 PF6を合成するための詳細なプロトコルと、NMR と分光特性を報告し、(ヘテロ) arenes の直接 arylation とラジカル環化のための合成化学におけるその使用法を示す。有機ハロゲン化物。特に、4-iodobenzonitrile を有するn-methylpyrrole の直接 arylation は 4-(1-メチル-1H-ピロール-2-イル) benzonitrile と、 n-ベンゾイル-n-[(2-iodoquinolin-3-イル) メチル] のラジカル環化シアナミド天然物 luotonin を買う余裕があるのは、詳細です。この銅ベースの photoredox 触媒の範囲と限界についても簡単に論じている。

概要

ラジカル変換は、カチオン、アニオンまたは pericyclic プロセス1に基づく変換をしばしば補完する合成化学の顕著に効率的な経路を提供するために何十年も知られています。特に様々なタイプの形質転換に対して有望であるが、ラジカル系化学は、主にその魅力をかなり制限する非常に有毒な試薬の必要性のために、underexploited されてきた。さらに、ラジカルプロセスは、長い間、regio および/または保っの観点からの制御の貧弱なレベルに関連する変換として考えられてきた、または広範なダイマー化および/または重合の問題につながります。

代替戦略は、最近、生成を促進し、ラジカル種の反応性をより良く制御するために開発されました。その中で、photoredox 触媒は、光応答性化合物、すなわち photoredox 触媒と可視光照射2,3 を使用してラジカル種の便利な生成を可能にする最も強力方法の1つとなっている.可視光自体は、photoredox 触媒の励起状態の集団を促進することができ、結果的に、対応する基底状態よりも強い還元剤および酸化剤の両方である。これらの増強された酸化還元特性は、単電子伝達プロセスを行い、基底状態では実現不可能であり、励起状態からの温和な条件下で可能である。過去10年間で、可視光 photoredox 触媒は、有機合成において魅力的で強力な技術となっており、ラジカル中間体に基づく多数の非常に効率的で選択的な形質転換の開発を可能にしました持続可能で軽度でユーザーフレンドリーな条件下で生成されます。

現在までに報告されているほとんどの photoredox プロセスは、イリジウムおよびルテニウムベースの photoredox 触媒の使用、ならびにピリリウムやアクリジニウム誘導体のようないくつかの有機染料によって支配的であるが、安価な代替品は依然として非常に要求されている産業応用のための興味の補完的なプロセスの開発のため。この点において、銅ベースの photoredox 触媒の使用は、より安価であるだけでなく、より広範かつ/または異なる範囲の基質を活性化する機会を提供するので、特に魅力的に見え、そのために新しい視点を開くphotoredox 触媒5678。Kutal9によって報告されたいくつかの有望な初期の作品にもかかわらず、三谷10およびソーベイジ11グループは、しかし、photoactivatable 銅錯体は、しかし、ほとんどが photoredox 触媒作用で使用されることはなく、最もルテニウム系およびイリジウム型の同族体に比べて、励起状態が短命です。より最近では、ピーターズおよび Fu 12131415、レイザー塁161718による最近の顕著な貢献は、19,20および他のグループ 2122232425は明らかに銅ベースの photoredox 触媒に注意をもたらしたし、それらを実証したユニークな可能性。

銅触媒ラジカルプロセス26,27への我々の最近の関心の一部として、我々は最近、一般的かつ広範に適用可能な銅ベースの photoredox 触媒を報告しました [(DPEPhos) (bcp) Cu] PF6 (DPEPhos: bis [(2-diphenylphosphino) フェニル」エーテル;bcp: bathocuproine) は、可視光照射下での有機ハロゲン化物の活性化のために特に有効であることが判明した (図 1a)282930。還元剤として可視光とアミンの存在下で照射すると、広範囲の通例アリールおよびアルキルハロゲン化物は、[(DPEPhos) (bcp) Cu] PF6の触媒量によって容易に活性化されることが示され、そのため、参加減少、cyclizations、およびいくつかの電子 arylation (ヘテロ) arenes の直接的な変化を含む種々のラジカル変換である。さらに、[(DPEPhos) (bcp) Cu] PF6は、ynamides と cyanamides の光誘起ラジカルドミノ cyclizations を促進することでも成功していることが証明されており、複雑な 3-テトラ-および pentacyclic 窒素への効率的で簡単なアクセスを提供します。コンビナトリアルケミストリーライブラリーは、様々な天然物のコア構造になっています。この戦略は、抗癌、抗菌、抗炎症および抗うつ作用を示す天然産物である rosettacin、luotonin、および deoxyvasicinone の効率的な合成を可能にした。これらの変換を図 1cに示す。機械的な観点から、[(DPEPhos) (bcp) Cu] PF6を有する有機ハロゲン化物の光誘起活性化は、稀な Cu (i)/Cu (i) */Cu (0) 触媒サイクルを介して進行し、広範な機械的および光物理的研究によって確認されている。特に、可視光によって照射された際の基底状態 [(DPEPhos) (bcp) Cu] PF6 [cu (i)] の励起は、対応する励起複合体 [(DPEPhos) (Bcp) CU] pf6* [cu (i) *] の形成につながり、犠牲アミンは、対応する [(DPEPhos) (bcp) Cu] PF6 [cu (0)] 種を生成する。この Cu (0) の中間体は、対応するラジカルを生成するために、様々な有機ハロゲン化物の炭素-ハロゲン結合を減少させるのに十分な還元性であり、これは、開始の再生とともに、前述の変換に参加することができます触媒 (図 1b)。

次のセクションでは、まず、photoactivatable [(DPEPhos) (bcp) Cu] PF6を合成するためのプロトコルを説明します (その NMR と分光特性が代表的な結果セクションに示されています)。合成は、簡単で、特に便利であり、単にジクロロメタンで tetrakisacetonitrile 銅 (I) hexafluorophosphate の溶液に DPEPhos の1相当と1相当の bcp の添加を必要とする。その後、所望の [(DPEPhos) (bcp) Cu] PF6は、ジエチルエーテルからの沈殿によって単離され、multigram スケールで容易に得ることができる (図 2a)。重要なことに、分離された銅複合体は、酸素や湿気に特に敏感ではなく、したがって、光から離れて保存される以外の特定の予防措置で便利に扱うことができる。

次に、2つの異なる変換に着目し、可視光照射下にある [(DPEPhos) (bcp) Cu] PF6を用いて有機ハロゲン化物を活性化するプロトコルについて述べる。第1の反応は、photoredox 触媒として [(DPEPhos) (bcp) Cu] PF6の触媒量を使用した arylation を用いたN-methylpyrrole の直接の iodobenzonitrile であり、その犠牲 dicyclohexylisobutylamine とカリウムとしての還元剤420 nm で照射下の塩基として炭酸塩 (図 2b)。第2の反応は、ベンゾイル- n-[(2-iodoquinolin-3-イル) メチル] シアナミドのラジカル環化であり、同一の触媒と犠牲還元剤を用いて、その環化が直接 luotonin をもたらす、天然物表示興味深い抗癌活動 (図 2c).詳細なプロトコルは両方の変換に提供されます。

プロトコル

(1) [(DPEPhos) (bcp) Cu] PF6の合成

  1. DPEPhos の tetrakisacetonitrile 銅 (I) hexafluorophosphate および 5.39 g (10.00 mmol) の 3.73 g (10.00 mmol) を、磁気攪拌棒を備えた 2 L 丸底フラスコに加えます。
  2. 丸底フラスコを、真空ラインとアルゴンラインに接続された3ネック真空アダプターに合わせます。
  3. 真空下でフラスコを排気し、アルゴンを3回埋め戻します。3ネックの真空アダプターをゴム製の隔壁に交換してください。
    注: 反応は、わずかに効率が低下した空気の下で行うことができます (詳細については、議論のセクションを参照してください)。
  4. 乾燥ジクロロメタンの 800 mL を追加します。
    注: ジクロロメタンはたわごと2から新たに蒸留されています。反応は、通常のジクロロメタンでも行うことができます (99.8%)同様の効率性を備えています (詳細については「ディスカッション」セクションを参照)。
  5. アルゴン雰囲気下で室温 (23-25 ºc) で暗所 (アルミ箔で覆われた反応フラスコ) で2時間の反応混合物を攪拌する。
  6. 3.60 g (10.00 mmol) の bcp を、磁性攪拌バーを備えた 500 mL の丸底フラスコに加えます。
  7. 丸底フラスコを、真空ラインとアルゴンラインに接続された3ネック真空アダプターに合わせます。
  8. 真空下でフラスコを排気し、アルゴンを3回埋め戻します。3ネックの真空アダプターをゴム製の隔壁に交換してください。
  9. 200ミリリットルの乾燥ジクロロメタンを加え、bcp が完全に溶解するまでサスペンションをやさしくかき混ぜる。
  10. カニューレを用いて反応混合物にジクロロメタンの bcp の溶液を加えた。
  11. アルゴン雰囲気下で室温 (23-25 ºc) で暗所 (アルミホイルで覆われた反応フラスコ) でさらに1時間撹拌する。
  12. セライトのパッドを通して混合物を濾過し、ジクロロメタンの ca. 100 mL で洗い、濾液を減圧下で 50-100 mL に濃縮します。
  13. ジエチルエーテルの 1 L に滴下する濃縮物を添加漏斗を用いて、激しく攪拌して所望の複合体の沈殿を誘導する。
  14. ガラス濾板ガラス (細孔サイズ 3) を通して濾過によって沈殿物を収集し、ジエチルエーテルの ca 100 mL で沈殿を洗浄します。
  15. 室温 (23-25 ºc) で真空下の明るい黄色の沈殿物を5時間乾燥させて、銅錯体の 10.1 g (91% 収率) を回復させる。
    注: 反応が蒸留ジクロロメタンを使用して空気の下で行われたとき、75% の収率が得られました。反応が通常のジクロロメタンを使用してアルゴン下で行われたとき、89% の収率が得られた。通常のジクロロメタンを用いて空気中で反応を行うと、反応は効率が低下し、より低い純度 (ca 70%、内部標準を有する 1h NMR によって推定される) をもたらした。
  16. すでに報告された31のように [(DPEPhos) (Bcp) CU] PF6を特徴付ける。

2. N-methylpyrrole の直接 arylation 4-iodobenzonitrile

  1. 55 mg (0.05 mmol) の [(DPEPhos) (bcp) Cu] PF6, 59 mg (0.25 mmol) の Dicyclohexylisobutylamine (Cy2)、138 Mg (1.0 mmol) の K2CO3および 114 mg (0.50 mmol) の 4-iodobenzonitrile をオーブン乾燥10ml バイアルに添加した。
  2. 磁気攪拌バーを追加し、ゴム中隔でバイアルを密封し、真空下でバイアルを避難し、アルゴンで3回バックフィルします。
  3. 5 mL のアセトニトリルと890μ l (10.00 mmol) のN-methylpyrrole を加えます。ゴムの中隔をスクリューキャップで交換してください。
    注: アセトニトリルはたわごと2から新たに蒸留され、高い収率と再現性を確保するために使用する前に凍結ポンプ解凍サイクルを使用して脱気します。
  4. 波長照射下 420 nm の photoreactor で、室温 (23-25 ºc) で3日間反応混合物を撹拌します。
    注: photoreactor を使用する代わりに、青色 led ランプ (440 nm, 34 W) を備えたブルーの Led ストリップまたは光化学デバイスを使用して、この反応を簡便に行うこともできます。これらの実験のセットアップは図 3に示されています (代表的な結果を参照)、それぞれの結果についての議論は「議論」セクションで提供されます。
  5. セライトのパッドを通して反応混合物を濾過し、ジエチルエーテルの ca 5 mL で洗浄し、濾液を減圧下で濃縮する。
  6. シリカゲル上のフラッシュカラムクロマトグラフィー (溶離液システム石油エーテル/EtOAc: 90/10) により粗残渣を精製します。
  7. 室温 (23-25 ºc) で真空下の純化合物を3時間乾燥させて、所望の C2-arylated ピロールの 65 mg (72% 収率) を回収する。
    注: 青色 led ランプ (440 nm、34 W) を備えた光化学デバイスの使用は、86% の収率 (78 mg) を与えられている一方で、青 Led ストリップの使用は、76% の収率 (69 mg) を有します。
  8. 以前に報告された32のように純粋な化合物を特徴付けます。

3. ベンゾイル-n-[(2-iodoquinolin-3-イル) メチル] シアナミドの環化を luotonin

  1. 追加 37 mg (0.09 mmol) n-ベンゾイル-[(2-iodoquinolin-3-イル) メチル] シアナミド, 9 mg (9.0 モル) [(DPEPhos) (BCP) Cu] PF6, 11 Mg (0.04 mmol) の Cy2NiBu と 25 mg (0.18 mmol) の K2CO3を磁気攪拌バーを備えたオーブン乾燥 7 mL バイアル。
  2. ゴム製の隔壁でバイアルを密封し、真空下でバイアルを排気し、アルゴンを3回埋め戻します。
  3. アセトニトリルを 2 mL 追加します。ゴムの中隔をスクリューキャップで交換してください。
    注: アセトニトリルはたわごと2から蒸留され、高い収率と再現性を確保するために使用する前に凍結ポンプ解凍サイクルを使用して脱気します。
  4. 波長照射下 420 nm の photoreactor で室温 (23-25 ºc) で5日間反応混合物を撹拌する。
  5. セライトのパッドを通して反応混合物を濾過し、ジクロロメタンの ca2 mL で洗浄し、濾液を減圧下で濃縮する。
  6. シリカゲル上のフラッシュカラムクロマトグラフィー (溶離液システム: 石油エーテル/EtOAc 60:40) により粗残渣を精製します。
  7. 真空下の純化合物を室温 (23-25 ºc) で3時間乾燥させ、所望の luotonin の 20mg (79% 収率) を回収する。
  8. 以前に報告された29のように、目的の luotonin を特徴付けます。

結果

[(DPEPhos) (bcp) Cu] PF6の合成
上記のセクションで説明したプロトコルによって示されるように、[(DPEPhos) (bcp) Cu] PF6の合成は、特に便利であり、multigram スケールで容易に行うことができる。1h および13cNMR スペクトルは、純粋複合体の形成を示す (図 4A、B)。分光学データは以前に報告された31に対?...

ディスカッション

[(DPEPhos) (bcp) Cu] PF6の合成
[(DPEPhos) (bcp) Cu] PF6の合成は、典型的には、乾式ジクロロメタン (使用前に蒸留) およびアルゴン下を用いて、最高収率、純度および良好な再現性を確保するために行われる。このプロトコルで述べたように、[(DPEPhos) (bcp) Cu] PF6の合成は、通常のジクロロメタンで行うことができる (99.8%)および/または可変的な効率の空気の下で。...

開示事項

作者は何も開示することはありません。

謝辞

この作品は、ニースリブレ・デ・ブリュッセル (ULB)、連盟ワロニー・ブリュッセル (アーク・コンソリ 2014-2019)、Innoviris (プロジェクト PhotoCop)、およびコスト・アクション・ CM1202 によってサポートされました。H.B. は、いのラ・ Recherche ダンス l'Industrie et ダンス l'Agriculture (F.R.I.A.) を大学院フェローシップのために注ぐことを認めます。C.T. は、研究フェローシップのためのい・デ・ラ・ Recherche Scientifique (FNRS) を認めています。

資料

NameCompanyCatalog NumberComments
Material
Bathocuproine (bcp)Acros161340010
Acetonitrile, 99.9+Acros326811000
Celite 545Acros349670025
Bis[(2-diphenylphosphino)phenyl] ether (DPEphos)Acros383370050
Calcium hydrideAcrosC/1620/48
Dichloromethane, 99.8%Fisher ChemicalD/1852/25
Dietyl ether, >= 99%Fisher ChemicalD/2400/MS21
Ethyl acetateFisher ChemicalE/0900/25
N-Methylpyrrole, 99%Sigma AldrichM78801
4-Iodobenzonitrile, 98%Combi-BlocksOR-3151
Petroleum ether (40-60 °)Fisher ChemicalP/1760/25
Potassium carbonate, anhydrousFisher ChemicalP/4120/60
Tetrakisacetonitrile copper(I) hexafluorophosphate, 97%Sigma Aldrich346276
Equipment
1H and 13C NMR spectrometerBrukerAvance 300 Spectrometer
1H and 13C NMR spectrometerVarianVNMRS 400 Spectrometer
420 nm light tubesLuzchemLZC-420
Blue LEDs lampKessilH150-Blue
Blue LEDs stripsEglo92065
Photochemistry Device PhotoRedOx BoxHepatochemHCK1006-01-016
PhotoreactorLuzchemCCP-4V
SpectrofluorimeterShimadzuRF-5301PC
UV/Vis spectrometerPerkin ElmerLambda 40

参考文献

  1. Chatgilialoglu, C., Studer, A. . Encyclopedia of Radicals in Chemistry, Biology and Materials. , (2012).
  2. Narayanam, J. M. R., Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chemical Society Reviews. 40, 102-113 (2011).
  3. Prier, C. K., Rankic, D. A., MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews. 113 (7), 5322-5363 (2013).
  4. Romero, N. A., Nicewicz, D. A. Organic Photoredox Catalysis. Chemical Reviews. 116 (17), 10075 (2016).
  5. Paria, S., Reiser, O. Copper in Photocatalysis. ChemCatChem. 6 (9), 2477-2483 (2014).
  6. Reiser, O. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes. Accounts of Chemical Research. 49 (9), 1990-1996 (2016).
  7. Boyer, C., et al. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chemical Reviews. 116 (4), 1803-1949 (2016).
  8. Paria, S., Reiser, O., Stephenson, C. R. J., Yoon, T. P., MacMillan, D. W. C. Visible Light and Copper Complexes: A Promising Match in Photoredox Catalysis. Visible Light Photocatalysis in Organic Chemistry. , 233-252 (2018).
  9. Grutsch, P. A., Kutal, C. Photobehavior of copper(I) compounds. Role of copper(I)-phosphine compounds in the photosensitized isomerization of norbornadiene. Journal of the American Chemical Society. 101 (15), 4228-4233 (1979).
  10. Mitani, M., Kato, I., Koyama, K. Photoaddition of alkyl halides to olefins catalyzed by copper(I) complexes. Journal of the American Chemical Society. 105 (22), 6719-6721 (1983).
  11. Kern, J. -. M., Sauvage, J. -. P. Photoassisted C-C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. Journal of the Chemical Society, Chemical Communications. , 546-548 (1987).
  12. Creutz, S. E., Lotito, K. J., Fu, G. C., Peters, J. C. Photoinduced Ullmann C-N coupling: demonstrating the viability of a radical pathway. Science. 338 (6107), 647-651 (2012).
  13. Kainz, Q. M., Matier, C. D., Bartoszewicz, A., Zultanski, S. L., Peters, J. C., Fu, G. C. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science. 351 (6274), 681-684 (2016).
  14. Matier, C. D., Schwaben, J., Peters, J. C., Fu, G. C. Copper-Catalyzed Alkylation of Aliphatic Amines Induced by Visible Light. Journal of the American Chemical Society. 139 (49), 17707-17710 (2017).
  15. He, J., Chen, C., Fu, G. C., Peters, J. C. Visible-Light-Induced, Copper-Catalyzed Three-Component Coupling of Alkyl Halides, Olefins and Trifluoromethylthiolate to Generate Trifluoromethyl Thioethers. ACS Catalysis. 8 (12), 11741-11748 (2018).
  16. Pirtsch, M., Paria, S., Matsuno, T., Isobe, H., Reiser, O. [Cu(dap)2Cl] As an Efficient Visible-Light-Driven Photoredox Catalyst in Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal. 18 (24), 7336-7340 (2012).
  17. Paria, S., Pirtsch, M., Kais, V., Reiser, O. Visible-Light-Induced Intermolecular Atom-Transfer Radical Addition of Benzyl Halides to Olefins: Facile Synthesis of Tetrahydroquinolines. Synthesis. 45 (19), 2689-2698 (2013).
  18. Knorn, M., Rawner, T., Czerwieniec, R., Reiser, O. [Copper(phenanthroline(bisisonitrile)]+-Complexes for the Visible-Light-Mediated Atom Transfer Radical Addition and Allylation Reactions. ACS Catalysis. 5 (9), 5186-5193 (2015).
  19. Bagal, D. B., Kachkovskyi, G., Knorn, M., Rawner, T., Bhanage, B. M., Reiser, O. Trifluoromethylchlorosulfonylation of Alkenes: Evidence for an Inner-Sphere Mechanism by a Copper Phenanthroline Photoredox Catalyst. Angewandte Chemie International Edition. 54 (24), 6999-7002 (2015).
  20. Hossain, A., et al. Visible-Light-Accelerated Copper(II)-Catalyzed Regio- and Chemoselective Oxo-Azidation of Vinyl Arenes. Angewandte Chemie International Edition. 57 (27), 8288-8292 (2018).
  21. Hernandez-Perez, A. C., Vlassova, A., Collins, S. K. Toward a Visible Light Mediated Photocyclization: Cu-Based Sensitizers for the Synthesis of [5]Helicene. Organic Letters. 14 (12), 2988-2991 (2012).
  22. Baralle, A., Fensterbank, L., Goddard, J. -. P., Ollivier, C. Aryl Radical Formation by Copper(I) Photocatalyzed Reduction of Diaryliodonium Salts: NMR Evidence for a CuII/CuI Mechanism. Chemistry - A European Journal. 19 (23), 10809-10813 (2013).
  23. Hernandez-Perez, A. C., Collins, S. K. A Visible-Light-Mediated Synthesis of Carbazole. Angewandte Chemie International Edition. 52 (48), 12696-12700 (2013).
  24. Tang, X. -. J., Doldier, W. R. Efficient Cu-catalyzed Atom Transfer Radical Addition Reactions of Fluoroalkylsulfonyl Chlorides with Electron-Deficient Alkenes Induced by Visible Light. Angewandte Chemie International Edition. 54 (14), 4246-4249 (2015).
  25. Fumagalli, G., Rabet, P. T. G., Boyd, S., Greaney, M. F. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst. Angewandte Chemie International Edition. 54 (39), 11481-11484 (2015).
  26. Demmer, C. S., Benoit, E., Evano, G. Synthesis of Allenamides by Copper-Catalyzed Coupling of Propargylic Bromides and Nitrogen Nucleophiles. Organic Letters. 18 (6), 1438-1441 (2016).
  27. Theunissen, C., Wang, J., Evano, G. Copper-catalyzed direct alkylation of heteroarenes. Chemical Science. 8, 3465-3470 (2017).
  28. Michelet, B., Deldaele, C., Kajouj, S., Moucheron, C., Evano, G. A General Copper Catalyst for Photoredox Transformations of Organic Halides. Organic Letters. 19 (13), 3576-3579 (2017).
  29. Baguia, H., Deldaele, C., Romero, E., Michelet, B., Evano, G. Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis. 50 (15), 3022-3030 (2018).
  30. Deldaele, C., Michelet, B., Baguia, H., Kajouj, S., Romero, E., Moucheron, C., Evano, G. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope Application in Natural Product Synthesis and Mechanistic Insights. CHIMIA. 72 (9), 621-629 (2018).
  31. Luo, S. -. P., et al. Photocatalytic Water Reduction with Copper-Based Photosensitizers: A Noble-Metal-Free System. Angewandte Chemie International Edition. 52 (1), 419-423 (2013).
  32. Gryko, D. T., Vakuliuk, O., Gryko, D., Koszarna, B. Palladium-Catalyzed 2-Arylation of Pyrroles. The Journal of Organic Chemistry. 74 (24), 9517-9520 (2009).
  33. Servais, A., Azzouz, M., Lopes, D., Courilon, C., Malacria, M. Radical Cyclization of N-Acylcyanamides: Total Synthesis of Luotonin A. Angewandte Chemie International Edition. 46 (4), 576-579 (2007).
  34. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., Noël, T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews. 116 (17), 10276-10341 (2016).
  35. Straathof, N. J. W., Noël, T., Stephenson, C. R. J., Yoon, T. P., MacMillan, D. W. C. Accelerating Visible-Light Photoredox Catalysis in Continuous-Flow Reactors. Visible Light Photocatalysis in Organic Chemistry. , 389-413 (2018).
  36. Marion, F., Courillon, C., Malacria, M. Radical Cyclization Cascade Involving Ynamides: An Original Access to Nitrogen-Containing Heterocycles. Organic Letters. 5 (26), 5095-5097 (2003).
  37. Han, Y. -. Y., Jiang, H., Wang, R., Yu, S. Synthesis of Tetracyclic Quinazolinones Using a Visible-Light-Promoted Radical Cascade Approach. The Journal of Organic Chemistry. 81 (16), 7276-7281 (2016).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

147 photoredox C H arylation cyanamides ynamides luotonin

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved