A subscription to JoVE is required to view this content. Sign in or start your free trial.
The aim of this method is to generate an in vivo model of tumor angiogenesis by xenografting mammalian tumor cells into a zebrafish embryo that has fluorescently-labelled blood vessels. By imaging the xenograft and associated vessels, a quantitative measurement of the angiogenic response can be obtained.
Tumor angiogenesis is a key target of anti-cancer therapy and this method has been developed to provide a new model to study this process in vivo. A zebrafish xenograft is created by implanting mammalian tumor cells into the perivitelline space of two days-post-fertilization zebrafish embryos, followed by measuring the extent of the angiogenic response observed at an experimental endpoint up to two days post-implantation. The key advantage to this method is the ability to accurately quantitate the zebrafish host angiogenic response to the graft. This enables detailed examination of the molecular mechanisms as well as the host vs tumor contribution to the angiogenic response. The xenografted embryos can be subjected to a variety of treatments, such as incubation with potential anti-angiogenesis drugs, in order to investigate strategies to inhibit tumor angiogenesis. The angiogenic response can also be live-imaged in order to examine more dynamic cellular processes. The relatively undemanding experimental technique, cheap maintenance costs of zebrafish and short experimental timeline make this model especially useful for the development of strategies to manipulate tumor angiogenesis.
Angiogenesis is one of the classic hallmarks of cancer and represents a target of anti-cancer therapy1,2. To study this process, xenograft models of cancer have been created by implanting mammalian tumor cells into animals such as mice3. A zebrafish xenograft model has also been developed, which involves the implantation of tumor cells into 2 days post fertilization (dpi) zebrafish which results in rapid growth of zebrafish blood vessels into the xenograft4.
This protocol describes an in vivo zebrafish embryo tumor xenograft model in w....
1. Preparation of Microinjection Needles
2. Cell Culture for Implantation
By imaging an individual xenograft at 6, 24 and 48 hpi, the angiogenic response at different timepoints can be calculated as shown in Figure 1A-C. The largest angiogenic response is observed between 24-48 h post implantation, with the maximum levels of graft vascularization seen around 2 dpi (Figure 1A-C). A time-lapse movie of a typical angiogenic response to a B16-F1 xenograft from 20.75 hpi un.......
The first critical step in the protocol is the implantation of tumor cells. It is essential that cells are injected into a location that will allow the xenograft to implant successfully in the embryo without making the embryo edematous. An injection that is too anterior can allow the cells to move towards the heart, blocking the bloodstream and leading to edema, while an injection that is too posterior will result in a poorly implanted xenograft. An anterior injection is best avoided by inserting the needle through the y.......
We thank Mr. Alhad Mahagaonkar for managing the University of Auckland zebrafish facility and the Biomedical Imaging Research Unit, School of Medical Sciences, University of Auckland, for assistance in time-lapse confocal microscopy. This work was supported by a Health Research Council of New Zealand project grant (14/105), a Royal Society of New Zealand Marsden Fund Project Grant (UOA1602) and an Auckland Medical Research Foundation Project Grant (1116012) awarded to J.W.A.
....Name | Company | Catalog Number | Comments |
Air cylinder | BOC | 011G | Xenotransplantation |
B16-F1 cells | ATCC | Cell culture | |
BD Matrigel LDEV-free (extracellular matrix mixture) | Corning | 356235 | Xenotransplantation |
Borosillicate glass capillaries | Warner Instruments | G100T-4 | OD=1.00 mm, ID=0.78 mm, Length =10 cm Cell injection |
Cell culture dish -35 mm diameter | Thermofisher NZ | NUN153066 | Fish husbandry |
Cell culture dish -100 mm diameter | Sigma-Aldrich | CLS430167-500EA | Fish husbandry |
Cell culture flask 75 cm2 | In Vitro Technologies | COR430641 | Cell culture |
CellTracker Green | Invitrogen | C2925 | Cell labelling, Stock concentration (10 mM in DMSO), working concentration (0.2 μM in serum-free media) |
Dimethyl sulfoxide | Sigma-Aldrich | D8418 | Drug treatment, Cell labelling |
E3 Media (60x in 2 L of water) 34.8 g NaCl 1.6 g KCl 5.8 g CaCl2·2H2O 9.78 g MgCl2·6H2O adjust to pH 7.2 with NaOH | In house [1] | Fish husbandry | |
Ethyl-3-aminobenzoate methanesulfonate (Tricaine) | Sigma-Aldrich | E10521 | Xenotransplantation, Imaging |
Filter tip 1000 μL | VWR | 732-1491 | Used during multiple steps |
Filter tip 200 μL | VWR | 732-1489 | Used during multiple steps |
Filter tip 10 μL | VWR | 732-1487 | Used during multiple steps |
Fluorescence microscope | Leica | MZ16FA | Preparation of embryos |
FBS (NZ origin) | Thermofisher Scientific | 10091148 | Cell culture |
Gloves | Any commercial brand | Used during multiple steps | |
Haemocytometer cell counting chamber Improved Neubauer | HawksleyVet | AC1000 | Xenotransplantation |
Heraeus Multifuge X3R Centrifuge | Thermofisher Scientific | 75004500 | Cell culture, Cell labelling |
Hoechst 33342 | Thermofisher Scientific | 62249 | Cell labelling, Stock concentration (1 mg/ml in DMSO), working concentration (6 μg/ml in serum-free media) |
Low Melting Point, UltraPure Agarose | Thermofisher Scientific | 16520050 | Imaging |
Methycellulose | Sigma-Aldrich | 9004 67 5 | Xenotransplantation |
Methylene blue | sigma-Aldrich | M9140 | Fish husbandry |
Microloader 0.5-20 μL pipette tip for loading microcapillaries | Eppendorf | 5242956003 | Xenotransplantation |
Micropipettes | Any commercial brand | Used during multiple steps | |
Micropipette puller P 87 | Sutter Instruments | Xenotransplantation | |
Microscope cage incubator | Okolab | Time-lapse imaging | |
Microwave | Any commercial brand | Imaging | |
Mineral oil | Sigma-Aldrich | M3516 | Xenotransplantation |
Minimal Essential Media (MEM) - alpha | Thermofisher Scientfic | 12561056 | Cell Culture |
MPPI-2 Pressure Injector | Applied Scientific Instrumentation | Xenotransplantation | |
Narishige micromanipulator | Narishige Group | Xenotransplantation | |
Nikon D Eclipse C1 Confocal Microscope | Nikon | Imaging | |
N-Phenylthiourea (PTU) | Sigma-Aldrich | P7629 | Fish husbandry |
PBS | Gibco | 10010023 | Cell culture |
Penicillin Streptomycin | Life Technologies | 15140122 | Cell culture |
S1 pipet filler | Thermoscientific | 9501 | Cell culture |
Serological stripette 10 mL | Corning | 4488 | Cell culture |
Serological stripette 25 mL | Corning | 4489 | Cell culture |
Serological stripette 5 mL | Corning | 4485 | Cell culture |
Serological stripette 2 mL | Corning | 4486 | Cell culture |
Terumo Needle 22 gauge | Amtech | SH 182 | Fish husbandry |
Tissue culture incubator | Thermofisher Scientfic | HeraCell 150i | Cell culture |
Tivozanib (AV951) | AVEO Pharmaceuticals | Drug treatment | |
Transfer pipette 3 mL | Mediray | RL200C | Fish husbandry |
Trypsin/EDTA (0.25% ) | Life Technologies | T4049 | Cell culture |
Tweezers | Fine Science Tools | 11295-10 | Fish husbandry |
Volocity Software (v6.3) | Improvision/Perkin Elmer | Image analysis |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved