Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The characterization of circulating tumor cells (CTCs) is a popular topic in translational research. This protocol describes a semi-automatic immunofluorescence (IF) assay for PD-L1 characterization and enumeration of CTCs in non-small cell lung cancer (NSCLC) patient samples.

Abstract

Circulating tumor cells (CTCs) derived from the primary tumor are shed into the bloodstream or lymphatic system. These rare cells (1−10 cells per mL of blood) warrant a poor prognosis and are correlated with shorter overall survival in several cancers (e.g., breast, prostate and colorectal). Currently, the anti-EpCAM-coated magnetic bead-based CTC capturing system is the gold standard test approved by the U.S. Food and Drug Administration (FDA) for enumerating CTCs in the bloodstream. This test is based on the use of magnetic beads coated with anti-EpCAM markers, which specifically target epithelial cancer cells. Many studies have illustrated that EpCAM is not the optimal marker for CTC detection. Indeed, CTCs are a heterogeneous subpopulation of cancer cells and are able to undergo an epithelial-to-mesenchymal transition (EMT) associated with metastatic proliferation and invasion. These CTCs are able to reduce the expression of cell surface epithelial marker EpCAM, while increasing mesenchymal markers such as vimentin. To address this technical hurdle, other isolation methods based on physical properties of CTCs have been developed. Microfluidic technologies enable a label-free approach to CTC enrichment from whole blood samples. The spiral microfluidic technology uses the inertial and Dean drag forces with continuous flow in curved channels generated within a spiral microfluidic chip. The cells are separated based on the differences in size and plasticity between normal blood cells and tumoral cells. This protocol details the different steps to characterize the programmed death-ligand 1 (PD-L1) expression of CTCs, combining a spiral microfluidic device with customizable immunofluorescence (IF) marker set.

Introduction

Tumor antigen-specific cytotoxic T-lymphocytes (CTLs) play a crucial role in the response to cancers through a process known as cancer "immune surveillance". Their anti-tumor functions are enhanced by immune checkpoint blockade antibodies such as CTLA-4 inhibitors and PD-1/PD-L1 inhibitors. In non-small cell lung cancer (NSCLC), anti-PD-1/PD-L1 therapies result in response rates ranging from 0%-17% in patients with PD-L1-negative tumors and 36%-100% in those expressing PD-L1. The robust responses to PD-1/PD-L1 blockade observed in melanoma and NSCLC are shown by evidence of improved overall response rate (RR), durable clinical benefits, and progression-free su....

Protocol

Samples were prospectively collected within the framework of the CIRCAN ("CIRculating CANcer") cohort based at the Lyon University Hospital following patient written consent. This study was integrated into the CIRCAN_ALL cohort. The study CIRCAN_ALL was recognized as non-interventional by the CPP South-East IV dated 04/11/2015 under the reference L15-188. An amended version was recognized as non-interventional on 20/09/2016 under reference L16-160. The CIRCAN_ALL study was declared to the IT and freedom correspon.......

Representative Results

The first pre-requisite was to obtain uncontaminated (infectious agent-free) collections of CTCs for tissue culture and avoid IF background generated. The decontamination protocol enabled cleaning of all the pipes and pumps, and it resulted in the collection of CTCs with a good recovery rate without bacterial contamination. The enriched samples were compared without and with the decontamination protocol workflow of the spiral microfluidic device. To validate the decontamination protocol, the A549 cell line was used in ab.......

Discussion

Two major points were raised in the present study, the first with regards to performance of the workflow for its transfer to clinical applications, and the second concerning the decrease in subjectivity for the analysis of fluorescence images obtained.

A performant and optimized workflow for CTC enumeration was initially determined using customizable IF assay after cell enrichment via a CTC label-free microfluidic system (spiral microfluidic device). Using this workflow, a pilot study confirme.......

Acknowledgements

This work was supported by research grants from AstraZeneca (London, United-Kingdom), Biolidics (Singapore) and the Ligue Contre le Cancer (Saone et Loire, France). The authors thank AstraZeneca and Biolidics companies for their financial support.

....

Materials

NameCompanyCatalog NumberComments
4',6-diamidino-2-phénylindole (DAPI)OzymeBLE 422801Storage conditions: +4°C
BD Facs Clean – 5LBD Biosciences340345Bleach-based cleaning agent. Storage conditions: Room temperature
Bleach 1% Cleaning Solution 100 mLBiolidicsCBB-F016012Bleach. Storage conditions: Room temperature
Bovine Serum Albumin (BSA) 7.5%SigmaA8412Storage conditions: +4°C
CD45 monoclonal antibody (clone HI30) Alexa Fluor 647BioLegendBLE304020Storage conditions: +4°C
CellProfiler SoftwareBroad InstituteImage Analysis Software
Centrifuge deviceHettich4706Storage conditions: Room temperature
Centrifuge tube 50 mLCorning430-829Storage conditions: Room temperature
Centrifuge Tube 15 mLBiolidicsCBB-F001004-25Storage conditions: Room temperature
ClearCell FX-1 SystemBiolidicsCBB-F011002Spiral microfluidic device. Storage conditions: Room temperature
Coulter Clenz Cleaning Agent – 5LBeckman Coulter8448222All-purpose cleaning reagent. Storage conditions: Room temperature
CTChip FR1SBiolidicsCBB-FR001002Microfluidic chip. Storage conditions: Room temperature
Cytospin 4ThermoFisherA78300003Storage conditions: Room temperature
Diluent Additive Reagent – 20 mLBiolidicsCBB-F016009Storage conditions: +4°C
EZ CytofunnelsThermoFisherA78710003Sample chamber with cotton. Storage conditions: Room temperature
FcR blocking AgentMiltenyi Biotec130-059-901Storage conditions: +4°C
Fetal Calf Serum (FCS)Gibco10270-106Storage conditions: +4°C
FluoromountSigmaF4680Mounting solution. Storage conditions: Room temperature
Fungizone - 50 mgBristol-Myers-Squibb90129TB29Anti-fungal reagent. Storage conditions: +4°C
FX1 Input Straw with lock capBiolidicsCBB-F013005Straw. Storage conditions: Room temperature
KovaSlideDutscher50126Chambered slide. Storage conditions: Room temperature
PanCK monoclonal antibody (clone AE1/AE3) Alexa Fluor 488ThermoFisher53-9003-80Storage conditions: +4°C
Paraformaldehyde 16%ThermoFisher11490570Fixation solution. Storage conditions: +4°C
PD-L1 monoclonal antibody (clone 29E2A3) - PhycoerythrinBioLegendBLE329706Storage conditions: +4°C
Petri DishDutscher632180Storage conditions: Room temperature
Phosphate Buffered Saline (PBS)OzymeBE17-512FStorage conditions: +4°C
Phosphate Buffered Saline Ultra Pure Grade 1X – 1L1st Base LaboratoryBUF-2040-1X1LStorage conditions: Room temperature
Pluronic F-68 10%Gibco24040-032Anti-binding solution. Storage conditions: Room temperature
Polylysine slidesThermoFisherJ2800AMNZStorage conditions: Room temperature
Polypropylene Conical Tube 50 mLFalcon352098Storage conditions: Room temperature
RBC Lysis Buffer – 100 mLG Biosciences786-649Storage conditions: +4°C
RBC Lysis Buffer – 250 mLG Biosciences786-650Storage conditions: +4°C
Resuspension Buffer (RSB)BiolidicsCBB-F016003Storage conditions: +4°C
Shandon Cytopsin4 centrifugeThermoFisherA78300003Dedicated centrifuge. Storage conditions: Room temperature
Silicon IsolatorGrace bio-Labs664270Storage conditions: Room temperature
Sterile Deionized Water – 100 mL1st Base LaboratoryCUS-4100-100mlStorage conditions: Room temperature
Straight Fluorescent microscope Axio Imager D1ZeissStorage conditions: Room temperature
Surgical Sterile BagSPS Laboratoires98ULT01240Storage conditions: Room temperature
Syringe BD Discardit II 20 mL sterileBD Biosciences300296Storage conditions: Room temperature
Syringe Filter 0.22 µm 33 mm sterileClearLine51732Storage conditions: Room temperature
Zen lite 2.3 Lite SoftwareZeissMicroscope associated software

References

  1. Gandhi, L., et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England Journal of Medicine. 378 (22), 2078-2092 (2018).
  2. Paz-Ares, L., et al. Pembrolizumab plus Chemothera....

Explore More Articles

Circulating Tumor CellsCTCNon small Cell Lung CancerPD L1ImmunofluorescenceMicrofluidicCell CharacterizationCell EnrichmentFISHTranscriptomics

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved