A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This article demonstrates a model to study cardiac remodeling after myocardial cryoinjury in mice.
The use of animal models is essential for developing new therapeutic strategies for acute coronary syndrome and its complications. In this article, we demonstrate a murine cryoinjury infarct model that generates precise infarct sizes with high reproducibility and replicability. In brief, after intubation and sternotomy of the animal, the heart is lifted from the thorax. The probe of a handheld liquid nitrogen delivery system is applied onto the myocardial wall to induce cryoinjury. Impaired ventricular function and electrical conduction can be monitored with echocardiography or optical mapping. Transmural myocardial remodeling of the infarcted area is characterized by collagen deposition and loss of cardiomyocytes. Compared to other models (e.g., LAD-ligation), this model utilizes a handheld liquid nitrogen delivery system to generate more uniform infarct sizes.
Acute coronary syndrome (ACS) is the leading causes of death in the Western world1,2. Acute occlusion of the coronary arteries leads to activation of ischemic cascade and necrosis of the affected cardiac tissue3. Damaged myocardium is gradually replaced by non-contractile scar tissue, which manifestz clinically as a heart failure4,5. Despite recent advances in the treatment of ACS, the prevalence of ACS and ACS-related heart failure is rising, and therapeutic options are limited6,
Animals received humane care in compliance with the Guide for the Principles of Laboratory Animals, prepared by the Institute of Laboratory Animal Resources, and published by the National Institutes of Health. All animal protocols were approved by the responsible local authority (the University of California San Francisco (UCSF) Institutional Animal Care and Use Committee).
1. Animal care
The cryoinjury infarct model is suitable to study ACS and its complications. Low mortality rates and efficient postsurgical recovery is seen in this model. Cryoinjury induced myocardial damage leads to reduced cardiac function, electrical uncoupling, and transmural remodeling.
Echocardiography can be used to monitor cardiac function noninvasively in vivo. In cryo-injured hearts, echocardiography demonstrates significantly reduced ejection fraction and fractional area change (
This article describes a mouse cryoinjury model to investigate ACS and related pharmacological and therapeutic options.
The most crucial step is the application of the cryoprobe on the cardiac tissue. Contact duration must be tightly controlled in order to obtain the optimal infarct size and to guarantee reproducible results. Prolonged cooling of the myocardium will lead to oversized infarcts or ventricular perforation. In contrast, shortened cooling time generates limited epicardial lesions a.......
We thank Christiane Pahrmann for her technical assistance. D.W. was supported by the Max Kade Foundation. T.D. received grants from the Else Kröner Fondation (2012_EKES.04) and the Deutsche Forschungsgemeinschaft (DE2133/2-1_. S. S. received research grants from the Deutsche Forschungsgemeinschaft (DFG; SCHR992/3- 1, SCHR992/4-1).
....Name | Company | Catalog Number | Comments |
10 ml Syringe | Thermo Scientific | 03-377-23 | |
5-0 prolene suture | Ethicon | EH7229H | |
6-0 prolene suture | Ethicon | 8706H | |
8-0 Ethilon suture | Ethicon | 2808G | |
Absorption Spears | Fine Science Tools | 18105-01 | |
BALB/c | The Jackson Laboratory | Stock number 000651 | |
Bepanthen Eye and Nose ointment | Bayer | 1578675 | Eye ointment |
Betadine Solution | Betadine Purdue Pharma | NDC:67618-152 | |
Blunt Forceps | Fine Science Tools | 18025-10 | |
Buprenex | Reckitt Benckiser | NDC Codes:Â 12496-0757-1, 12496-0757-5 | Buprenorphine |
Cryoprobe 3mm | Brymill Cryogenic Systems | Cry-AC-3 B-800 | |
Ethanol 70% | Th. Geyer | 2270 | |
Forceps curved | S&T | 00284 | |
Forceps fine | Fine Science Tools | 11251-20 | |
Forceps standard | Fine Science Tools | 11023-10 | |
Gross Anatomy Probe | Fine Science Tools | 10088-15 | |
Hair clipper | WAHL | 8786-451A ARCO SE | |
High temperature cautery kit | Bovie | 18010-00 | |
ISOFLURANE | Henry Schein Animal Health | 029405 | |
IV Catheter 20G | B. Braun | 603028 | |
Mini-Goldstein Retractor | Fine Science Tools | 17002-02 | |
NaCl 0.9% | B.Braun | PZN 06063042Â Â Â Â Â Â Â Â Â Art. Nr.: 3570160 | saline |
Needle holder | Fine Science Tools | 12075-14 | |
Needle Holder, Curved | Harvard Apparatus | 72-0146 | |
Novaminsulfon | Ratiopharm | PZN 03530402 | Metamizole |
Operating Board | Braintree Scientific | 39OP | |
Replaceable Fine Tip | Bovie | H101 | |
Scissors | Fine Science Tools | 14028-10 | |
Small Animal Ventilator | Kent Scientific | RV-01 | |
Spring Scissors - Angled to Side | Fine Science Tools | 15006-09 | |
Surgical microscope | Leica | M651 | |
Transpore Surgical Tape | 3M | 1527-1 | |
Vannas Spring Scissors | Fine Science Tools | 15400-12 | |
Vaporizer | Kent Scientific | VetFlo-1205S |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved