A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol introduces a light-spot assay to investigate Drosophila larval phototactic behavior. In this assay, a light spot is generated as light stimulation, and the process of larval light avoidance is recorded by an infrared light-based imaging system.
The larvae of Drosophila melanogaster show obvious light-avoiding behavior during the foraging stage. Drosophila larval phototaxis can be used as a model to study animal avoidance behavior. This protocol introduces a light-spot assay to investigate larval phototactic behavior. The experimental set-up includes two main parts: a visual stimulation system that generates the light spot, and an infrared light-based imaging system that records the process of larval light avoidance. This assay allows tracking of the behavior of larva before entering, during encountering, and after leaving the light spot. Details of larval movement including deceleration, pause, head casting, and turning can be captured and analyzed using this method.
The larvae of Drosophila melanogaster show obvious light-avoiding behavior during the foraging stage. Drosophila larval phototaxis has been under investigation, especially in the past 50 years1,2,3,4,5,6,7,8. In recent years, despite the fact that 1) many neurons mediating larval light avoidance have been identified4,5,
1. Preparation of Drosophila larvae
2. Preparation of agar plates
According to the protocol, the light spot assay was used to investigate light avoidance behavior of third instar larva that were raised at 25 °C on standard medium in a room with a 12 h/12 h light/dark cycle. A single w1118 larva was tested using the light spot assay at 25.5 °C. The average light intensity of the light spot generated by a 460 nm LED was 0.59 µW/cm2. The whole process of larval entering and exiting the light spot was recorded and analyzed using SOS software an.......
This protocol presents the light spot assay to test the ability of Drosophila larvae to escape from light. This assay allows tracking of the behavior of larvae before entering, during encountering, and after leaving a light spot. Details of larval movement can be captured and analyzed. The light spot assay is very simple and possesses strong practicability. The cost of the whole device is not high. In the experiment, LED light is used as the light source. It can be replaced with light sources of different wavele.......
This work is supported by natural science foundation of China (31671074) and Fundamental Research Funds for the Zhejiang Provincial Universities (2019XZZX003-12).
....Name | Company | Catalog Number | Comments |
850 nm ± 3 nm infrared-light-generating LED | Thorlabs, USA | PM100A | Compatible Sensors: Photodiode and Thermal Optical Power Rangea: 100 pW to 200 W Available Sensor Wavelength Rangea: 185 nm-25 μm Display Refresh Rate: 20 Hz Bandwidtha: DC-100 kHz Photodiode Sensor Rangeb: 50 nA-5 mA Thermopile Sensor Rangeb: 1 mV-1 V |
AC to DC converter | Thorlabs, USA | S120VC | Aperture Size: Ø9.5 mm Wavelength Range: 200-1100 nm Power Range: 50 nW-50 mW Detector Type: Si Photodiode (UV Extended) Linearity: ±0.5% Measurement Uncertaintyc: ±3% (440-980 nm), ±5% (280-439 nm), ±7% (200-279 nm, 981-1100 nm) |
band-pass filter | Thorlabs, USA | DC2100 | LED Current Range: 0-2 A LED Current Resolution: 1 mA LED Current Accuracy: ±20 mA LED Forward Voltage: 24 V Modulation Frequency Range: 0-100 kHz Sine Wave Modulation: Arbitrary |
Collimated LED blue light | ELP, China | USBFHD01M | Max. Resolution: 1920X1080 F6.0 mm Sensor: 1/2.7" CMOS OV2710 |
Compact power meter console | Ocean Optics, USA | USB2000+(RAD) | Dimensions: 89.1 mm x 63.3 mm x 34.4 mm Weight: 190 g Detector: Sony ILX511B (2048-element linear silicon CCD array) Wavelength range: 200-850 nm Integration time: 1 ms – 65 seconds (20 seconds typical) Dynamic range: 8.5 x 10^7 (system); 1300:1 for a single acquisition Signal-to-noise ratio: 250:1 (full signal) Dark noise: 50 RMS counts Grating: 2 (250 – 800 nm) Slit: SLIT-50 Detector collection lens: L2 Order-sorting: OFLV-200-850 Optical resolution: ~2.0 nm FWHM Stray light: <0.05% at 600 nm; <0.10% at 435 nm Fiber optic connector: SMA 905 to 0.22 numerical aperture single-strand fiber |
High-Power LED Driver | Minhongshi, China | MHS-48XY | Working voltage: DC12V Central wavelength: 850nm |
high-resolution web camera | Thorlabs, USA | MWWHL4 | Color: Warm White Correlated Color Temperature: 3000 K Test Current for Typical LED Power: 1000 mA Maximum Current (CW): 1000 mA Bandwidth (FWHM): N/A Electrical Power: 3000 mW Viewing Angle (Full Angle): 120˚ Emitter Size: 1 mm x 1 mm Typical Lifetime: >50 000 h Operating Temperature (Non-Condensing): 0 to 40 °C Storage Temperature: -40 to 70 °C Risk Groupa: RG1 – Low Risk Group |
LED Warm White | Mega-9, China | BP850/22K | Ø25.4(+0~-0.1) mm Bandwidth: 22±3nm Peak transmittance:80% Central wavelength: 850nm±3nm |
Spectrometer | Noel Danjou | Amcap9.22 | AMCap is a still and video capture application with advanced preview and recording features. It is a Desktop application designed for computers running Windows 7 SP1 or later. Most Video-for-Windowsand DirectShow-compatible devices are supported whether they are cheap webcams or advanced video capture cards. |
Standard photodiode power sensor | Super Dragon, China | YGY-122000 | Input: AC 100-240V~50/60Hz 0.8A Output: DC 12V 2A |
Thermal power sensor | Thorlabs, USA | M470L3-C1 | Color: Blue Nominal Wavelengtha: 470 nm Bandwidth (FWHM): 25 nm Maximum Current (CW): 1000 mA Forward Voltage: 3.2 V Electrical Power (Max): 3200 mW Emitter Size: 1 mm x 1 mm Typical Lifetime: 100 000 h Operating Temperature (Non-Condensing): 0 to 40 °C Storage Temperature: -40 to 70 °C Risk Groupb: RG2 – Moderate Risk Group |
Thermal power sensor | Thorlabs, USA | S401C | Wavelength range: 190 nm-20 μm Optical power range:10 μW-1 W(3 Wb) Input aperture size: Ø10 mm Active detector area: 10 mm x 10 mm Max optical power density: 500 W/cm2 (Avg.) Linearity: ±0.5% |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved