È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Per questo abbiamo proposto un protocollo per illustrare l'effetto della morfologia della superficie aggregata sulla microstruttura IT. L'immagine SEM-BSE è stata analizzata quantitativamente per ottenere il gradiente di porosità di IT tramite l'elaborazione digitale delle immagini e un algoritmo di clustering K-mezzi è stato ulteriormente impiegato per stabilire una relazione tra gradiente di porosità e rugosità della superficie.
Qui, presentiamo un metodo completo per illustrare la distribuzione irregolare della zona di transizione interfacciale (IT) intorno all'aggregato e l'effetto della morfologia della superficie aggregata sulla formazione dell'IT. In primo luogo, un campione di calcestruzzo modello viene preparato con una particella di ceramica sferica nella parte centrale approssimativa della matrice di cemento, agendo come un aggregato grossolano utilizzato nel calcestruzzo/mortaio comune. Dopo la stagionatura fino all'età progettata, il campione viene scansionato dalla tomografia computerizzata a raggi X per determinare la posizione relativa della particella ceramica all'interno della matrice del cemento. Vengono scelte tre posizioni dell'IT: sopra l'aggregato, sul lato dell'aggregato e al di sotto dell'aggregato. Dopo una serie di trattamenti, i campioni vengono scansionati con un rilevatore SEM-BSE. Le immagini risultanti sono state ulteriormente elaborate utilizzando un metodo di elaborazione delle immagini digitali (DIP) per ottenere caratteristiche quantitative dell'IT. La morfologia della superficie è caratterizzata a livello di pixel in base all'immagine digitale. Successivamente, K-significa metodo di clustering viene utilizzato per illustrare l'effetto della rugosità della superficie sulla formazione di IT.
Su scala mesoscopica, i materiali a base di cemento possono essere considerati come un composito a tre fasi composto dalla pasta di cemento, dall'aggregato e dalla zona di transizione interfacciale (IT) traloro 1,2. L'IT è spesso trattato come un anello debole poiché la sua maggiore porosità potrebbe fungere da canali per l'ingresso di specie aggressive3,4 o fornire percorsi più facili per la crescita delle crepe5,6,7,8,
1. Preparazione del calcestruzzo del modello con una singola particella ceramica
La distribuzione della porosità delle aree IT al di sopra dell'aggregazione, sul lato dell'aggregato e al di sotto dell'aggregato, viene confrontata e illustrata nella Figura 432. La porosità dell'IT sopra la superficie superiore sembra essere più piccola di quella sul lato o sopra l'aggregato, indicando una microstruttura IT- più densa, mentre l'IT al di sotto dell'aggregato è sempre la più porosa a causa della micro-bleeding. La figura 4
La tecnica X-CT è stata applicata per determinare approssimativamente il centro geometrico della particella ceramica per garantire che la superficie analizzata sia attraverso l'equatore della particella. Pertanto, la sopraelevazione dello spessore IT, causato dagli artefatti 2D, potrebbe essere evitata38 . Qui, l'accuratezza dei risultati ottenuti dipende fortemente dalla planarità delle superfici esaminate. In generale, un tempo di macinazione e lucidatura più lungo contribuisce ad una superfi.......
Con la presente confermiamo che questo manoscritto è il nostro lavoro originale e tutti gli autori elencati hanno approvato il manoscritto e non hanno conflitti di interesse su questo documento.
Gli autori riconoscono con gratitudine il sostegno finanziario del Programma di Ricerca e Sviluppo nazionale della Cina (2017YFB0309904), della National Natural Science Foundation of China (Grant Nos. 51508090 e 51808188), del Programma 973 (2015CB655100), del Materiali di ingegneria civile ad alte prestazioni (2016CEM005). Inoltre, apprezzano molto il Jiangsu Research Institute of Building Science Co., Ltd e il Laboratorio Chiave dello Stato di Materiali di Ingegneria Civile ad alte Prestazioni per il finanziamento del progetto di ricerca.
....Name | Company | Catalog Number | Comments |
Auto Sputter Coater | Cressington | 108 Auto/SE | |
Automatic polishing machine | Buehler | Phoenix4000 | |
Brush | Huoniu | 3# | |
Cement | China United Cement Corporation | P.I. 42.5 | |
Cement paste mixer | Wuxi Construction and Engineering | NJ160 | |
Ceramic particle | Haoqiang | Φ15 mm | |
Cling film | Miaojie | 65300 | |
Cold mounting machine | Buehler | Cast N' Vac 1000 | |
Conductive tape | Nissin Corporation | 7311 | |
Cup | Buehler | 20-8177-100 | |
Cutting machine | Buehler | Isomet 4000 | |
Cylindrical plastic mold | Buehler | 20-8151-100 | |
Diamond paste | Buehler | 00060210, 00060190, 00060170 | |
Diesel oil | China Petroleum | 0# | |
Electronic balance | Setra | BL-4100F | |
Epoxy resin | Buehler | 20-3453-128 | |
Hardener | Buehler | 20-3453-032 | |
High precision cutting machine | Buehler | 2215 | |
Image J | National Institutes of Health | 1.52o | |
Isopropyl alcohol | Sinopharm | M0130-241 | |
Matlab | MathWorks | R2014a | |
Paper | Deli | A4 | |
Plastic box | Beichen | 3630 | |
Plastic mold | Youke | a=b=c=25mm | |
Polished flannelette | Buehler | 242150, 00242050, 00242100 | |
Release agent | Buehler | 20-8186-30 | |
Scanning Electron Microscopy | FEI | Quanta 250 | |
Scrape knife | Jinzheng Building Materials | CD-3 | |
SiC paper | Buehler | P180, P320, P1200 | |
Ultrasonic cleaner | Zhixin | DLJ | |
Vacuum box | Heheng | DZF-6020 | |
Vacuum drying oven | ZK | ZK30 | |
Vibrating table | Jianyi | GZ-75 | |
Wooden stick | Buehler | 20-8175 | |
X-ray Computed Tomography | YXLON | Y.CT PRECISION S |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon