Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol was generated as a means to produce brain organoids in a simplified, low cost manner without exogenous growth factors or basement membrane matrix while still maintaining the diversity of brain cell types and many features of cellular organization.

Abstract

Human brain organoids differentiated from embryonic stem cells offer the unique opportunity to study complicated interactions of multiple cell types in a three-dimensional system. Here we present a relatively straightforward and inexpensive method that yields brain organoids. In this protocol human pluripotent stem cells are broken into small clusters instead of single cells and grown in basic media without a heterologous basement membrane matrix or exogenous growth factors, allowing the intrinsic developmental cues to shape the organoid's growth. This simple system produces a diversity of brain cell types including glial and microglial cells, stem cells, and neurons of the forebrain, midbrain, and hindbrain. Organoids generated from this protocol also display hallmarks of appropriate temporal and spatial organization demonstrated by brightfield images, histology, immunofluorescence and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Because these organoids contain cell types from various parts of the brain, they can be utilized for studying a multitude of diseases. For example, in a recent paper we demonstrated the use of organoids generated from this protocol for studying the effects of hypoxia on the human brain. This approach can be used to investigate an array of otherwise difficult to study conditions such as neurodevelopmental handicaps, genetic disorders, and neurologic diseases.

Introduction

Due to myriad practical and ethical limitations, there has been a great deal of difficulty in studying the human brain. While studies utilizing rodents have been critical to our understanding of the human brain, the mouse brain has many dissimilarities1,2. Interestingly, mice have a neuronal density that is at least 7 times less than the primate brain3,4. Although primates are closer to humans than rodents from an evolutionary standpoint, it is not practical for most researchers to work with them. The purpose of this protocol was to recapitulate many i....

Protocol

1. Stem Cell Maintenance

  1. Maintain H9 hESCs on a layer of growth factor reduced basement membrane matrix (see the Table of Materials, henceforth simply referred to as matrix) according to the manufacturer's instructions.
    1. To coat one 6-well plate or one 10 cm dish, combine 100 µL of matrix with 5.9 mL of ice-cold Dulbecco's modified Eagle medium (DMEM)/F12 media. Wrap plates in paraffin film and store overnight at 4 °C. Use them on the next day for passaging cells .......

Representative Results

Figure 1 shows representative brightfield images of several time points to demonstrate what the cells/organoids look like throughout the different stages of the protocol. The hESCs were removed from the tissue culture plate, broken into small pieces, and placed in a T75 ultra-low attachment flask where they formed spheres. It is important to note that the cells look bright and similar in size, without dark, dying cells in the centers of these clusters. The cells were gradually weaned off bFG.......

Discussion

Similar to other organoid models, this is an artificial system that comes with several caveats. Although there was little batch to batch variation in terms of overall expression levels, individual organoids did exhibit differences. For example, the location of Sox-2 positive areas were not identical in every organoid (Figure 3). While qPCR is suitable to look for overall changes in batches of cells, additional techniques such as single cell RNAseq will be utilized in future studies to gather more informa.......

Acknowledgements

We thank the Yale Stem Cell Core (YSCC), and the Yale Cancer Center (YCC) for assistance. We thank Dr. Jung Kim for his neuropathology review. This work was supported by Connecticut Regenerative Medicine Research Fund, March of Dimes, and NHLBI R01HL131793 (S.G.K.), the Yale Cancer Center and the Yale Cancer Biology Training Program NCI CA193200 (E.B.) and a generous unrestricted gift from Joseph and Lucille Madri.

....

Materials

NameCompanyCatalog NumberComments
Alexa Fluor 488 goat anti-mouseThermo Fisher Scientific, Waltham, MA, USAA11029
Alexa Fluor 546 goat anti-rabbitThermo Fisher Scientific, Waltham, MA, USAA11035
B27 SupplementGibco, Waltham, MA, USA17504-044
bFGFLife Technologies, Carlsbad, CA, USAPHG0263
BSASigma-Aldrich, St. Louis, MO, USAA9647
BX43 microscopeOlympus, Shinjuku, Tokyo, Japan
DAPI stainThermo Fisher Scientific, Waltham, MA, USAD1306
DispaseSTEMCELL Technologies, Vancouver, Canada07913
DMEM/F12Thermo Fisher Scientific, Waltham, MA, USA11330-032
DPBSGibco, Waltham, MA, USA10010023
FluroSaveMilliporeSigma, Burlington, MA345789
GFAP antibodyNeuroMab, Davis, CAN206A/8
Growth Factor Reduced Matrigel (Matrix)Corning, Corning, NY, USA356231
H9 hESCsWiCell, Madison, WI, USAWA09
HeparinSigma-Aldrich, St. Louis, MO, USA9041-08-1
iQ SYBR Green SupermixBio-Rad, Hercules, CA, USA1708880
iScript cDNA Synthesis KitBio-Rad, Hercules, CA, USA1708891
L-glutamineGibco, Waltham, MA, USA25030-081
MonothioglycerolSigma-Aldrich, St. Louis, MO, USAM6145
mTESR mediaSTEMCELL Technologies, Vancouver, Canada85850
N2 NeuroPlexGemini Bio Products, West Sacramento, CA, USA400-163
NanodropThermo Fisher Scientific, Waltham, MA, USAND-2000
NEAAGibco, Waltham, MA, USA11140-050
Normal Donkey Serum (NDS)ImmunoResearch Laboratories Inc., West Grove, PA, USA017-000-121
OCTSakura Finetek, Torrance, CA, USA25608-930
PFAElectron Microscopy Sciences, Hatfield, PART15710
qPCR machineBio-Rad, CFX96, Hercules, CA, USA1855196
RNeasy kitQiagen, Hilden, Germany74104
Sox2MilliporeSigma, Burlington, MAAB5603
TMS-F microscopeNikon, Melville, NY, USA
Triton X-100Sigma-Aldrich, St. Louis, MO, USAT8787-100ML
Ultra-low attachment T75 flasksCorning, Corning, NY, USA3814

References

  1. Northcutt, R. G. Understanding vertebrate brain evolution. Integrative and Comparative Biology. 42 (4), 743-756 (2002).
  2. Roth, G. . The Long Evolution of Brains and Minds. , (2013).
  3. Herculano-Houzel, S.

Explore More Articles

Brain OrganoidsHuman Embryonic Stem CellsNeurodevelopmental DisordersToxic InsultsBrain CancerReproducibleSimple WorkflowCost effectiveMatrixH9 HESCsMTeSR1 MediaLow Oxygen IncubatorProtease SolutionPassaging

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved