A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Impaired mitochondrial transport and morphology are involved in various neurodegenerative diseases. The presented protocol uses induced pluripotent stem cell-derived forebrain neurons to assess mitochondrial transport and morphology in hereditary spastic paraplegia. This protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology, which will facilitate the study of neurodegenerative disease.
Neurons have intense demands for high energy in order to support their functions. Impaired mitochondrial transport along axons has been observed in human neurons, which may contribute to neurodegeneration in various disease states. Although it is challenging to examine mitochondrial dynamics in live human nerves, such paradigms are critical for studying the role of mitochondria in neurodegeneration. Described here is a protocol for analyzing mitochondrial transport and mitochondrial morphology in forebrain neuron axons derived from human induced pluripotent stem cells (iPSCs). The iPSCs are differentiated into telencephalic glutamatergic neurons using well-established methods. Mitochondria of the neurons are stained with MitoTracker CMXRos, and mitochondrial movement within the axons are captured using a live-cell imaging microscope equipped with an incubator for cell culture. Time-lapse images are analyzed using software with "MultiKymograph", "Bioformat importer", and "Macros" plugins. Kymographs of mitochondrial transport are generated, and average mitochondrial velocity in the anterograde and retrograde directions is read from the kymograph. Regarding mitochondrial morphology analysis, mitochondrial length, area, and aspect ratio are obtained using the ImageJ. In summary, this protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology to facilitate studies of neurodegenerative diseases.
Mitochondrial motility and distribution play a vital role in fulfilling variable and specialized energetic demands in polarized neurons. Neurons can extend extremely long axons to connect with targets through the formation of synapses, which demand high levels of energy for Ca2+ buffering and ion currents. Transport of mitochondria from soma to axon is critical for supporting axonal and synaptic function of neurons. Spatially and temporally dynamic mitochondrial movement is conducted by fast axonal transport at rates of several micrometers per second1.
Specifically, motor or adaptor proteins, such as kinesin and dynein, participate in the fast organelle transport along microtubules to control the movement of mitochondria2,3. Normal neuronal activity requires proper transport of newly assembled mitochondria from neuronal soma to distal axon (anterograde axonal transport) and reverse transport of mitochondria from the distal axon back to the cell body (retrograde transport). Recent studies have indicated that improper mitochondrial allocation is strongly associated with neuronal defects and motor neuron degenerative diseases4,5. Therefore, to dissect the role of mitochondria in neurodegeneration, it is important to establish methods for examining mitochondrial movement along axons in live cultures.
There are two main challenges in examining and analyzing the tracking of mitochondria: (1) identifying mitochondria from the background in every frame, and (2) analyzing and generating the connections between every frame. In resolving the first challenge, a fluorescence labeling approach is used widely to distinguish mitochondria from the background, such as MitoTracker dye or transfection of fluorescence-fused mitochondrial targeting protein (e.g., mito-GFP)6,7,8. To analyze the association between frames, several algorithms and software tools have been described in previous studies9. In a recent paper, researchers compared four different automated tools (e.g., Volocity, Imaris, wrMTrck, and Difference Tracker) to quantify mitochondrial transport. The results showed that despite discrepancies in track length, mitochondrial displacement, movement duration, and velocity, these automated tools are suitable for evaluating transport difference after treatment10. In addition to these tools, an integrated plugin "Macros" for ImageJ (written by Rietdorf and Seitz) has been widely used for analyzing mitochondrial transport11. This method generates kymographs that can be used to analyze mitochondrial movement, including velocity in both anterograde and retrograde directions.
Mitochondria are highly dynamic organelles that constantly change in number and morphology in response to both physiological and pathological conditions. Mitochondrial fission and fusion tightly regulate mitochondrial morphology and homeostasis. The imbalance between mitochondrial fission and fusion can induce extremely short or long mitochondrial networks, which can impair mitochondrial function and result in abnormal neuronal activities and neurodegeneration. Impaired mitochondrial transport and morphology are involved in various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and hereditary spastic paraplegia (HSP)12,13,14,15. HSP is a heterogeneous group of inherited neurological disorders characterized by the degeneration of the corticospinal tract and subsequent failure to control lower limb muscles16,17. In this study, iPSC-derived forebrain neurons are used to assess mitochondrial transport and morphology in HSP. This method provides a unique paradigm for examining mitochondrial dynamics of neuronal axons in live cultures.
1. Generation of telencephalic glutamatergic neurons from iPSCs
NOTE: The detailed protocol for maintaining iPSCs and their differentiation into telencephalic glutamatergic neurons are similar to those described previously18. Here, the critical process during the differentiation of human pluripotent stem cells is introduced and highlighted.
2. Examination of mitochondrial transport along axons of telencephalic glutamatergic neurons
3. Data analysis of mitochondrial transport and morphology in cortical neurons
NOTE: Analyze the collected data on mitochondrial transport using an image analysis software (e.g., ImageJ or MetaMorph19). Since ImageJ is readily available, perform the analysis of mitochondrial transport and morphology using ImageJ with the MultiKymograph, Macros, and Analyze particles plugins.
Here, human iPSCs were differentiated into telencephalic glutamatergic neurons, which were characterized by immunostaining with Tbr1 and βIII tubulin markers (Figure 1A). To examine the axonal transport of mitochondria, these cells were stained with red fluorescent dye, and time-lapse imaging was performed. Since ImageJ is readily available and easier to obtain, mitochondrial transport was further analyzed with the "MultiKymograph" and "Macros" ImageJ pl...
This article describes a method to analyze mitochondrial transport and morphology in neuronal axons using red fluorescent dye and ImageJ software, both of which provide a unique platform to study axonal degeneration and mitochondrial morphology in neurodegenerative disease. There are several critical steps in the protocol, including staining of mitochondria, live cell imaging, and analyzing the images. In this method, a fluorescent dye was used to stain mitochondria. Since human iPSC-derived neurons are easily detached f...
The authors declare no competing financial interests.
This work was supported by the Spastic Paraplegia Foundation, the Blazer Foundation and the NIH (R21NS109837).
Name | Company | Catalog Number | Comments |
Accutase Cell Detachment Solution | Innovative Cell Technologies | AT104 | |
Biosafety hood | Thermo Scientific | 1300 SERIES A2 | |
Bovine serum albumin (BSA) | Sigma | A-7906 | |
Brain derived neurotrophic factor (BDNF) | Peprotech | 450-02 | |
Centrifuge | Thermo Scientific | Sorvall Legend X1R/ 75004261 | |
Coverslips | Chemiglass Life Sciences | 1760-012 | |
Cyclic AMP (cAMP) | Sigma-Aldrich | D0627 | |
Dispase | Gibco | 17105-041 | |
Dorsomorphin | Selleckchem | S7146 | |
Dulbecco's modified eagle medium with F12 nutrient mixture (DMEM/F12) | Corning | 10-092-CV | |
FBS | Gibco | 16141-002 | |
Fibroblast growth factor 2 (FGF2, bFGF) | Peprotech | 100-18B | |
Geltrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix | Gibco | A1413201 | |
Gem21 NeuroPlex Serum-Free Supplement | Gemini | 400-160 | |
Glass Bottom Dishes | MatTek | P35G-0.170-14-C | |
9'' glass pipetes | VWR | 14673-043 | |
Glial derived neurotrophic factor (BDNF) | Sigma-Aldrich | D0627 | |
GlutaMAX-I | Gibco | 35050-061 | |
Heparin | Sigma | H3149 | |
Insulin growth factor 1 (IGF1) | Invitrogen | M7512 | |
Knockout Serum Replacer | Gibco | A31815 | |
Laminin | Sigma | L-6274 | |
2-Mercaptoethanol | Sigma | M3148-100ML | |
MitoTracker CMXRos | Invitrogen | M7512 | |
Neurobasal medium | Gibco | 21103-049 | |
Non Essential Amino Acids | Gibco | 11140-050 | |
N2 NeuroPle Serum-Free Supplement | Gemini | 400-163 | |
Olympus microscope IX83 | Olympus | IX83-ZDC2 | |
PBS | Corning | 21-031-CV | |
Phase contrast microscope | Olympus | CKX41/ IX2-SLP | |
6 well plates | Corning | 353046 | |
24 well plates | Corning | 353047 | |
Poly-L-ornithine hydrobromide (polyornithine)) | Sigma-Aldrich | P3655 | |
SB431542 | Stemgent | 04-0010 | |
Sterile 50ml Disposable Vacuum Filtration System 0.22 μm Millipore Express® Plus Membrane | Millipore | SCGP00525 | |
Stericup 500/1000 ml Durapore 0.22 μM PVDF | Millipore | SCGVU10RE | |
Tbr1 antibody (1:2000) | Chemicon | AB9616 | |
Trypsin inhibitor | Gibco | 17075029 | |
50 ml tubes | Phenix | SS-PH50R | |
15 ml tubes | Phenix | SS-PH15R | |
T25 flasks (untreated) | VWR | 10861-572 | |
Plugins for softwares | |||
Bio-formats Package | http://downloads.openmicroscopy.org/bio-formats/5.1.0/ | ||
Fiji software | https://fiji.sc/ | ||
Kymograph Plugin | https://www.embl.de/eamnet/html/body_kymograph.html | ||
MultipleKymograph.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
MultipleOverlay.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
WalkingAverage.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
StackDifference.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
Straighten_.jar | https://imagej.nih.gov/ij/plugins/straighten.html | ||
tsp050706.txt | https://www.embl.de/eamnet/html/body_kymograph.html |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved