A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes the steps taken to induce KRAS lung tumors in mice as well as the quantification of formed tumors by ultrasound imaging. Small tumors are visualized in early timepoints as B-lines. At later timepoints, relative tumor volume measurements are achieved by the measurement tool in the ultrasound software.
With ~1.6 million victims per year, lung cancer contributes tremendously to the worldwide burden of cancer. Lung cancer is partly driven by genetic alterations in oncogenes such as the KRAS oncogene, which constitutes ~25% of lung cancer cases. The difficulty in therapeutically targeting KRAS-driven lung cancer partly stems from having poor models that can mimic the progression of the disease in the lab. We describe a method that permits the relative quantification of primary KRAS lung tumors in a Cre-inducible LSL-KRAS G12D mouse model via ultrasound imaging. This method relies on brightness (B)-mode acquisition of the lung parenchyma. Tumors that are initially formed in this model are visualized as B-lines and can be quantified by counting the number of B-lines present in the acquired images. These would represent the relative tumor number formed on the surface of the mouse lung. As the formed tumors develop with time, they are perceived as deep clefts within the lung parenchyma. Since the circumference of the formed tumor is well-defined, calculating the relative tumor volume is achieved by measuring the length and width of the tumor and applying them in the formula used for tumor caliper measurements. Ultrasound imaging is a non-invasive, fast and user-friendly technique that is often used for tumor quantifications in mice. Although artifacts may appear when obtaining ultrasound images, it has been shown that this imaging technique is more advantageous for tumor quantifications in mice compared to other imaging techniques such as computed tomography (CT) imaging and bioluminescence imaging (BLI). Researchers can investigate novel therapeutic targets using this technique by comparing lung tumor initiation and progression between different groups of mice.
As the leading cause of cancer-related deaths worldwide, lung cancer remains refractory to treatments, mainly due to lack of relevant pre-clinical models that can recapitulate the disease in the lab1. Around 25% of lung cancer cases are due to mutations in the KRAS oncogene2. KRAS-driven lung cancer is often associated with poor prognosis and low response to therapy, highlighting the importance of further studies in this disease2.
We optimized a method that allows the relative evaluation of lung tumor growth in real time in KRAS lung cancer-induced immune-competent mice....
Animal studies were performed in accordance with the Institutional Animal Care and Use Committee (IACUC) of McGill University and procedures were approved by the Animal Welfare Committee of McGill University (animal use protocol # 2009-5754).
1. Generation of CA2Cre-shp53 Lentiviral Titre
NOTE: The following protocol is the same as that described in Xia et al.6, with minor modifications.
After obtaining a lentiviral infectious titer of ~2 x 106 TU/mL (Figure 1), the Ca2Cre-shp53 lentivirus was intratracheally injected when LSL-KRAS G12D mice reached an appropriate age (6−8 weeks)9. Ultrasound imaging was performed after 7 weeks of infection upon initiation of tumors (Figure 3B). Imaging was done at 7 weeks in order to include the various types of precursor lesions that occur in the LSL-KR.......
We demonstrate a method that can assess lung tumor growth in the Cre-inducible LSL-KRAS G12D mouse model by ultrasound. This method can be used for evaluating the effect of pharmacological inhibitors on lung tumor growth. It can also be used to compare lung tumor growth between mice of different genetic backgrounds. Using this technique does not require specialized computational skills, however, it is important to be systematic in the number of frames used for analysis to allow for proper comparison if the method is used.......
We thank Dr. I. Verma for the lentiviral Ca2Cre-shp53 vector. The work was supported by funds from the Canadian Institutes of Health Research (CIHR MOP 137113) to AEK.
....Name | Company | Catalog Number | Comments |
0.45 μm Acrodisc Syringe Filters | Pall Corporation | PN 4614 | |
100-mm Cell Cultre Plate | CELLSTAR | 664 160 | |
6-well Cell Culture Plate | CELLSTAR | 657 160 | |
Amicon Ultra - 15 Centrifugal Filter Units | Merck Millipore Ltd. | UFC910024 | |
BD LSR-Fortessa | BD Biosciences | 649225B 3024 | |
CA2Cre-shp53 lentiviral vector | From Dr. I Verma Laboratory | ||
DMEM | Multicell | 319-005-CL | |
FBS | Multicell | 80450 | |
LSL-KRASG12D mouse | JAX Mice | 8179 | |
MX550S; Centre Transmit: 40 MHz | FUJIFILM VisualSonics | 51070 | |
OptiMEM | gibco | 11058-021 | |
Pen/strep | Multicell | 450-201-EL | |
pMD2.G | Addgene | 12259 | |
PsPAX2 | Addgene | 12260 | |
VEVO-3100 | FUJIFILM VisualSonics | 51072-50 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved