A subscription to JoVE is required to view this content. Sign in or start your free trial.
Impact print-type hot embossing technology uses an impact header to engrave dot patterns on flexible materials in real time. This technology has a control system for controlling the on-off motion and position of the impact header to create dot patterns with various widths and depths on different polymer films.
Here we present our study on an impact print-type hot embossing process which can create dot patterns with various designs, widths, and depths in real time on polymer film. In addition, we implemented a control system for the on-off motion and position of the impact header to engrave different dot patterns. We performed dot patterning on various polymer films, such as polyester (PET) film, polymethyl methacrylate (PMMA) film, and polyvinyl chloride (PVC) film. The dot patterns were measured using a confocal microscope, and we confirmed that the impact print-type hot embossing process produces fewer errors during the dot patterning process. As a result, the impact print-type hot embossing process is found to be suitable for engraving dot patterns on different types of polymer films. In addition, unlike the conventional hot embossing process, this process does not use an embossing stamp. Therefore, the process is simple and can create dot patterns in real time, presenting unique advantages for mass production and small-quantity batch production.
Researchers are actively attempting to miniaturize existing devices and displays and increase the flexibility of these devices1,2. To reduce the width and depth of electrical channels to the micro or nano scale, high-precision technology is necessary. In addition, to increase the flexibility of these devices, the patterns of the electrical channels must be located on a flexible material, such as a polymer film3,4. To meet these conditions, the study of ultrafine microprocessing technology is actively underway.
Ultrafine micr....
1. Fabrication of the impact print-type hot embossing process
The impact print-type hot embossing process is a process that can be used to engrave dot patterns onto a polymer film in real time, as shown in Figure 1. This process can resolve the issues of the high cost and long times for pattern replacement associated with the existing hot embossing process. A control circuit was constructed, as shown in Figure 2 (see steps 2.3–2.3.9), using the DAQ, OP-AMP, and power supply to carve patterns on various types of polym.......
In this study, we implemented the impact print-type hot embossing process and engraved dot patterns with various widths and depths onto a range of polymer films in real time. Among the protocol steps, two steps should be critically considered among all steps. The first is the setting of the temperature of the heat plate (step 3.3.3), and the second is the setting of the initial position of the impact header (step 3.5.1). In step 3.3.3, if the temperature of the heat plate is too high, it becomes difficult to form a patte.......
This research is supported by the project entitled "Development of impact print-type hot embossing technology for a conductive layer using conductive nano-composite materials" through the Ministry of Trade, Industry and Energy (MOTIE) of Korea (N046100024, 2016).
....Name | Company | Catalog Number | Comments |
0.3mm High Quality Clear Rigid Packaging PVC Film Roll For Vacuum Forming | Sunyo | SY1023 | PVC film / Thickness : 300µm |
Acryl(PMMA) film | SEJIN TS | C200 | PMMA film / Thickness : 175µm |
Confocal Laser Scanning Microscope: 3D-Topography for Materials Analysis and Testing | Carl Zeiss | LSM 700 | 3D confocal microscope / Supporting Mode : 2D, 2.5D, 3D topography |
DAQ board | NATIONAL INSTRUMENTS | USB-6211 | Control board for two stage and impact header / 16 inputs, 16-bit, 250kS/s, Multifunction I/O |
DC Power Supply | SMART | RDP-305AU | 3 channel power supply / output voltage : 0~30V, Output current : 0~5A |
L511 stage | PI | L511.20SD00 | Z-stage / Travel range : 52mm |
Large Digital Hotplate | DAIHAN Scientific | HPLP-C-P | Heatplate / Max Temp : 350ºC |
M531 stage | PI | M531.2S1 | X-stage / Travel range : 306mm |
Mylar Polyester PET films | CSHyde | 48-2F-36 | PET film / Thickness : 50µm |
OPA2541 | BURR-BROWN | OPA2541BM | OP-AMP / Output currents : 5A, output voltage : ±40V |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved