Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to obtain luminescent hyperspectral imaging data and to analyze optical anisotropy features of lanthanide-based single crystals using a Hyperspectral Imaging System.

Abstract

In this work, we describe a protocol for a novel application of hyperspectral imaging (HSI) in the analysis of luminescent lanthanide (Ln3+)-based molecular single crystals. As representative example, we chose a single crystal of the heterodinuclear Ln-based complex [TbEu(bpm)(tfaa)6] (bpm=2,2’-bipyrimidine, tfaa =1,1,1-trifluoroacetylacetonate) exhibiting bright visible emission under UV excitation. HSI is an emerging technique that combines 2-dimensional spatial imaging of a luminescent structure with spectral information from each pixel of the obtained image. Specifically, HSI on single crystals of the [Tb-Eu] complex provided local spectral information unveiling variation of the luminescence intensity at different points along the studied crystals. These changes were attributed to the optical anisotropy present in the crystal, which results from the different molecular packing of Ln3+ ions in each one of the directions of the crystal structure. The HSI herein described is an example of the suitability of such technique for spectro-spatial investigations of molecular materials. Yet, importantly, this protocol can be easily extended for other types of luminescent materials (such as micron-sized molecular crystals, inorganic microparticles, nanoparticles in biological tissues, or labelled cells, among others), opening many possibilities for deeper investigation of structure-property relationships. Ultimately, such investigations will provide knowledge to be leveraged into the engineering of advanced materials for a wide range of applications from bioimaging to technological applications, such as waveguides or optoelectronic devices.

Introduction

Hyperspectral Imaging (HSI) is a technique that generates a spatial map where each x-y coordinate contains a spectral information that could be based on any kind of spectroscopy, namely photoluminescence, absorption and scattering spectroscopies1,2,3. As a result, a 3-dimensional set of data (also called “hyperspectral cube”) is obtained, where the x-y coordinates are the spatial axes and the z coordinate is the spectral information from the analyzed sample. Therefore, the hyperspectral cube contains both spatial and spectral information....

Protocol

CAUTION: It is recommended to use safety goggles specific for the excitation wavelength being used at all times when operating the imager.

1. Configuration of the hyperspectral microscope

NOTE: An overview of the hyperspectral imaging system is given in Figure 2a, with the main components of the imager being described. The imaging system can be used for the detection of the visible or the near-infrared (NIR) emission from a sample. Depend.......

Representative Results

To illustrate the configuration of the hyperspectral microscope for the data acquisition on a Ln-based, molecular single crystal (i.e., [TbEu(bpm)(tfaa)6], Figure 1a), Figure 2 shows an overview of the system as well as the right placement of the optical cubes in the setup. Figure 3 shows a screen shot of the PHySpec software containing the menus used during the HSI acquisition. Figure 4 and .......

Discussion

The hyperspectral imaging protocol here described provides a straightforward approach that allows to obtain spectroscopic information at precise locations of the sample. Using the described setup, the spatial resolution (x and y mapping) can reach down to 0.5 µm while the spectral resolution can be of 0.2 nm for the mapping at the visible range and 0.6 nm for the NIR range.

In order to conduct hyperspectral mapping on a single crystal, sample preparation follows an easy .......

Acknowledgements

The authors thank Mr. Dylan Errulat and Prof. Muralee Murugesu from the Department of Chemistry and Biomolecular Sciences of the University of Ottawa for the provision of [TbEu(bpm)(tfaa)6] single crystals. E.M.R, N.R., and E.H. gratefully acknowledge the financial support provided by the University of Ottawa, the Canadian Foundation for Innovation (CFI), and the Natural Sciences and Engineering Research Council Canada (NSERC).

....

Materials

NameCompanyCatalog NumberComments
Microscope glass slidesFisherBrand12-550-15Glass slides used for sample preparation
Visible and Near Infrared Hyperspectral Confocal ImagerPhotonETCMicroscope used for the analysis, builted according to the user needs, therefore it is no catalog number

References

  1. ElMasry, G., Sun, D. W. Principles of Hyperspectral Imaging Technology. Hyperspectral Imaging for Food Quality Analysis and Control. , 3-43 (2010).
  2. Dong, X., Jakobi, M., Wang, S., Köhler, M. H., Zhang, X., Koch, A. W. A review of hyperspectr....

Explore More Articles

Hyperspectral Imaging Optical Anisotropy Lanthanide based Molecular Single Crystals Spectroscopic Information Fluorescence Microscopy Imaging Hardware Software Manipulation Confocal Microscope Optical Cube Visible Light Path Confocal Spectrometer Pinhole Terbium Europium Bi pyrimidine Trifluoroacetylacetonate Objective White Light

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved