A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Biology
ここでは、中国北西部の新疆省にある779のサンプルプロットから21898 ピセアアスペラタ の木を含むデータセットに基づいて、5年間の基底面積増分の個々の木モデルを開発しました。同じサンプリングユニットからの観測値間の高い相関を防ぐために、確率的変動性を考慮してランダムプロット効果を用いた線形混合効果アプローチを用いてモデルを開発しました。樹木サイズ、競合、サイト条件のインデックスなど、さまざまなツリーレベルおよびスタンドレベル変数が、残留変動性を説明するための固定効果として含まれていました。また、不均一性と自己相関性は、分散関数と自己相関構造を導入して説明した。最適な線形混合効果モデルは、アカイケの情報基準、ベイズ情報基準、対数尤度、尤度比検定など、いくつかの適合統計によって決定されました。その結果、個々の木の基礎面積の増分の有意な変数は、乳房の高さでの直径の逆変換、被験者の木よりも大きい木の基礎面積、ヘクタール当たりの木の数、および標高であることを示した。さらに、分散構造の誤差は指数関数によって最もうまくモデル化され、自己相関は一次自己回帰構造(AR(1)によって有意に補正された。線形混合効果モデルのパフォーマンスは、通常の最小二乗回帰を使用してモデルに対して大幅に改善されました。
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved