JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Immunology and Infection

Quantifying Human Norovirus Virus-like Particles Binding to Commensal Bacteria Using Flow Cytometry

Published: April 29th, 2020

DOI:

10.3791/61048

1Microbiology and Cell Science Department, University of Florida

Abstract

Commensal bacteria are well established to impact infection of eukaryotic viruses. Direct binding between the pathogen and the host microbiome is responsible for altering infection for many of these viruses. Thus, characterizing the nature of virus-bacteria binding is a foundational step needed for elucidating the mechanism(s) by which bacteria alter viral infection. For human norovirus, commensal bacteria enhance B cell infection. The virus directly binds to these bacteria, indicating that this direct interaction is involved in the mechanism of infection enhancement. A variety of techniques can be used to quantify interactions between bacteria and viruses including scintillation counting of radiolabeled viruses and polymerase chain reaction (PCR). Both methods require the use of live virus, which may need to be generated in the laboratory. Currently, none of the established in vitro culture systems available for human norovirus are robust enough to allow for generation of highly concentrated viral stocks. In lieu of live virus, virus-like particles (VLPs) have been used to characterize the interactions between norovirus and bacteria. Herein a flow cytometry method is described with uses virus specific antibodies to quantify VLP binding to gram-negative and gram-positive bacteria. Inclusion of both bacteria only and isotype controls allowed for optimization of the assay to reduce background antibody binding and accurate quantification of VLP attachment to the bacteria tested. High VLP:bacterium ratios result in VLPs binding to large percentages of the bacterial population. However, when VLP quantities are decreased, the percent of bacteria bound also decreases. Ultimately, this method can be employed in future experiments elucidating the specific conditions and structural components that regulate norovirus:bacterial interactions.

Explore More Videos

Keywords Virus bacterial Interactions

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved