A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we introduce and describe widely accessible methodologies utilizing some versatile nematode models, including hyperactivated ion channel-induced necrosis and protein aggregate-induced neurotoxicity, to monitor and dissect the cellular and molecular underpinnings of age-associated neurodegenerative diseases.
Battling human neurodegenerative pathologies and managing their pervasive socioeconomic impact is becoming a global priority. Notwithstanding their detrimental effects on the human life quality and the healthcare system, the majority of human neurodegenerative disorders still remain incurable and non-preventable. Therefore, the development of novel therapeutic interventions against such maladies is becoming a pressing urgency. Age-associated deterioration of neuronal circuits and function is evolutionarily conserved in organisms as diverse as the lowly worm Caenorhabditis elegans and humans, signifying similarities in the underlying cellular and molecular mechanisms. C. elegans is a highly malleable genetic model, which offers a well-characterized nervous system, body transparency and a diverse repertoire of genetic and imaging techniques to assess neuronal activity and quality control during ageing. Here, we introduce and describe methodologies utilizing some versatile nematode models, including hyperactivated ion channel-induced necrosis (e.g., deg-3(d) and mec-4(d)) and protein aggregate (e.g., α-syunclein and poly-glutamate)-induced neurotoxicity, to monitor and dissect the cellular and molecular underpinnings of age-related neuronal breakdown. A combination of these animal neurodegeneration models, together with genetic and pharmacological screens for cell death modulators will lead to an unprecedented understanding of age-related breakdown of neuronal function and will provide critical insights with broad relevance to human health and quality of life.
Over the last two decades, C. elegans has been widely used as a model organism to investigate the molecular mechanisms of necrotic cell death. C. elegans offers an exceptionally well-characterized and mapped nervous system, transparent body structure and a diverse repertoire of genetic and imaging methods to monitor in vivo cellular function and survival throughout ageing. Thus, several C. elegans genetic models of neurodegeneration have been already developed to assess neuronal viability. In particular, well-described and used nematode models include the hyperactive ion channel-induced necrosis1,
1. Necrotic cell death-induced by hyperactive ion channels
NOTE: Gain-of-function mutations in the gene family of degenerins, including mec-4 and deg-3 among others, results in the generation of hyperactive ion channels triggering necrotic cell death of six touch receptor neurons required for mechanosensation in worms3. Necrosis induced by the aberrant stimulation of degenerins displays several mechanistic and morphological similarities to excitotoxicity.......
Necrotic cell death-induced by hyperactive ion channels
Using the procedures presented here, mec-4(u231) and deg-3u662) mutant embryos were either incubated for 25 min at 34 °C or kept at the standard temperature of 20 °C. Upon hatching, the number of neuronal cell corpses was determined at the L1 larval stage of both groups. Necrotic cell death is diminished in nematodes that hatched from heat shock preconditioned eggs (Figure 1A-1B.......
Here, we introduce and describe widely accessible methodologies for growth, synchronization and microscopic examination of some versatile C. elegans models investigating age-dependent neurodegeneration. Particularly, we assess and dissect the cellular and molecular underpinnings of age-related neuronal breakdown by using hyperactivated ion channel-induced necrosis and protein aggregate-induced neurotoxicity1,2,3,
We thank Chaniotakis M. and Kounakis K. for video recording and editing. K.P. is funded by a grant from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT). N.T. is funded by grants from the European Research Council (ERC – GA695190 – MANNA), the European Commission Framework Programmes, and the Greek Ministry of Education.
....Name | Company | Catalog Number | Comments |
Agar | Sigma-Aldrich | 5040 | |
Agarose | Biozym | 8,40,004 | |
AM101: rmsIs110[prgef-1Q40::YFP] | Caenorhabditis Genetics Center (CGC) | ||
Calcium chloride dehydrate (CaCl2∙2H2O) | Sigma-Aldrich | C5080 | |
Cholesterol | SERVA Electrophoresis | 17101.01 | |
deg-3(u662)V or deg-3(d) | Caenorhabditis Genetics Center (CGC) | Maintain animals at 20 °C | |
DIC microscope (Nomarsky) | Zeiss | Axio Vert A1 | |
Dissecting stereomicroscope | Nikon Corporation | SMZ645 | |
Epifluorescence microscope | Thermo Fisher Scientific | EVOS Cell Imaging Systems | |
Escherichia coli OP50 strain | Caenorhabditis Genetics Center (CGC) | ||
Greiner Petri dishes (60 mm x 15 mm) | Sigma-Aldrich | P5237 | |
image analysis software | Fiji | https://fiji.sc | |
KH2PO4 | EMD Millipore | 1,37,010 | |
K2HPO4 | EMD Millipore | 1,04,873 | |
Magnesium sulfate (MgSO4) | Sigma-Aldrich | M7506 | |
mec-4(u231)X or mec-4(d) | Caenorhabditis Genetics Center (CGC) | Maintain animals at 20 °C | |
Microscope slides (75 mm x 25 mm x 1 mm) | Marienfeld, Lauda-Koenigshofen | 10 006 12 | |
Microscope cover glass (18 mm x 18 mm) | Marienfeld, Lauda-Koenigshofen | 01 010 30 | |
Microsoft Office 2011 Excel software package | Microsoft Corporation, Redmond, USA | ||
Na2HPO4 | EMD Millipore | 1,06,586 | |
Nematode growth medium (NGM) agar plates | |||
Nystatin stock solution | Sigma-Aldrich | N3503 | |
Peptone | BD, Bacto | 211677 | |
Phosphate buffer | |||
Sodium chloride (NaCl) | EMD Millipore | 1,06,40,41,000 | |
Standard equipment for preparing agar plates (autoclave, Petri dishes, etc.) | |||
Standard equipment for maintaining worms (platinum wire pick, incubators, etc.) | |||
statistical analysis software | GraphPad Software Inc., San Diego, USA | GraphPad Prism software package | |
Streptomycin | Sigma-Aldrich | S6501 | |
Tetramisole hydrochloride | Sigma-Aldrich | L9756 | |
UA44: Is[baIn1; pdat-1α-syn, pdat-1GFP] | Upon request: G. Caldwell (University of Alabama, Tuscaloosa AL) |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved