Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This publication describes a protocol for the isolation of nuclei from mature adipocytes, purification by fluorescence-activated sorting, and single-cell level transcriptomics.

Abstract

Brown and beige fat are specialized adipose tissues that dissipate energy for thermogenesis by UCP1 (Uncoupling Protein-1)-dependent and independent pathways. Until recently, thermogenic adipocytes were considered a homogeneous population. However, recent studies have indicated that there are multiple subtypes or subpopulations that are distinct in developmental origin, substrate use, and transcriptome. Despite advances in single-cell genomics, unbiased decomposition of adipose tissues into cellular subtypes has been challenging because of the fragile nature of lipid-filled adipocytes. The protocol presented was developed to circumvent these obstacles by effective isolation of single nuclei from adipose tissue for downstream applications, including RNA sequencing. Cellular heterogeneity can then be analyzed by RNA sequencing and bioinformatic analyses.

Introduction

Studies have shown that brown adipose tissue (BAT) has a remarkable capacity to dissipate energy. Two types of thermogenic adipocytes with distinct developmental features exist in both rodents and humans: beige adipocytes and classical brown adipocytes. While classical brown adipocytes are located mostly in interscapular BAT depots, beige adipocytes sporadically emerge in white adipose tissue (WAT) in response to certain physiological cues, such as chronic cold exposure, a process referred to as "browning" or "beiging". Through the use of advanced imaging, it is now clear that adult humans have substantial depots of UCP1+ BAT, especially in ....

Protocol

Animal care and experimentation were performed according to procedures approved by the Institutional Animal Care and Use Committee at the Albert Einstein College of Medicine.

1. Preparation of tissue digestion and lysis buffers

  1. Prepare tissue digestion buffer.
    1. Prepare ~1 mL of digestion buffer for every gram of adipose tissue.
    2. Weigh out 1.5 U/mL collagenase D and 2.4 U/mL dispase II and add phosphate buffered saline (PBS).
  2. Prepare nucl.......

Representative Results

Unsorted adipocyte nuclei contain debris and doublets that create noise and high background in downstream single-cell RNA sequencing. The representative FACS gate strategy is shown in Figure 1. The nuclei were first selected based on forward scatter (FSC) and side scatter (SSC) (A), then, only singlets were selected based on the combination of width and heights of SSC (B). Finally, only DAPI-positive events were selected and .......

Discussion

A straightforward and robust method to isolate single nuclei and study adipose tissue heterogeneity is presented. Compared to whole tissue RNA sequencing, this workflow offers an unbiased view of cellular heterogeneity and population-specific markers. This is significant and innovative for the advancement of adipocyte biology, molecular metabolism, and obesity research.

This protocol is particularly optimized for downstream application of snRNA-seq. The "cleanup" step to achieve isolat.......

Acknowledgements

We would like to thank David Reynolds from the Albert Einstein Genomics core and Jinghang Zhang from the Flow Cytometry Core for technical support. We acknowledge support from the National Institutes of Health (NIH) (DK110426) and Pilot and Feasibility Grants from the Einstein-Mount Sinai Diabetes Research Center (DK020541), and New York Obesity Research Center (DK026687) (all to K.S.). We also would like to thank Albert Einstein Cancer Center (CA013330) for core support.

....

Materials

NameCompanyCatalog NumberComments
autoMACS Rinsing SolutionMiltenyi Biotec130-091-222PBS with EDTA; sterile-filtered
BSASigmaA1595
CaCl2Sigma21115
Cell filter 100 μmCorning431752
Cell filter 40μmCorning431750
CellTrics (30 μm)Sysmex04-004-2326
Collagenase DRoche11088866001
Countess II FL Automated Cell CounterInvitrogenAMQAF1000
DAPISigmaD9542
Dispase IIRoche4942078001
HEPESSigmaH4034
KClFisherP217-3
MACS SmartStrainers (30 µm)Miltenyi Biotec130-098-458Stackable filters
MgCl2SigmaM1028
MoFloXDP Cell SorterBeckman CoulterML99030
NP-40Sigma74385
Protector RNase InhibitorRoche3335402001
SucroseFisherS5-3

References

  1. Cypess, A. M., et al. Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine. 360 (15), 1509-1517 (2009).
  2. van Marken Lichtenbelt, W. D., et al. Cold-activated brown adipose tissue ....

Explore More Articles

Adipose TissueSingle cell GenomicsNuclei IsolationAdipocytesStromal Vascular FractionCell FiltrationTissue DigestionNuclear AggregatesSingle cell TranscriptomicsAdipose HeterogeneityTissue level OrganizationAdipose KnockoutTransgenic Mice

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved