A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The protocol describes a rapid, high-throughput, reliable, inexpensive, and unbiased assay for efficiently determining cellular viability. This assay is particularly useful when cells' mitochondria have been damaged, which interferes with other assays. The assay uses automated counting of cells stained with two nuclear dyes – Hoechst 33342 and propidium iodide.
The contribution of mitochondria to oncogenic transformation is a subject of wide interest and active study. As the field of cancer metabolism becomes more complex, the goal of targeting mitochondria using various compounds that inflict mitochondrial damage (so-called mitocans) is becoming quite popular. Unfortunately, many existing cytotoxicity assays, such as those based on tetrazolium salts or resazurin require functional mitochondrial enzymes for their performance. The damage inflicted by compounds that target mitochondria often compromises the accuracy of these assays. Here, we describe a modified protocol based on differential staining with two fluorescent dyes, one of which is cell-permeant (Hoechst 33342) and the other of which is not (propidium iodide). The difference in staining allows living and dead cells to be discriminated. The assay is amenable to automated microscopy and image analysis, which increases throughput and reduces bias. This also allows the assay to be used in high-throughput fashion using 96-well plates, making it a viable option for drug discovery efforts, particularly when the drugs in question have some level of mitotoxicity. Importantly, results obtained by Hoechst/PI staining assay show increased consistency, both with trypan blue exclusion results and between biological replicates when the assay is compared to other methods.
The first step to identifying effective cancer treatments is the selection of a robust, unbiased cytotoxicity assay that can be used to examine the effect of treatment. A common choice for low-throughput experiments is the exclusion of trypan blue dye from living cells. This method is favored because it allows a relatively unbiased method for quantifying cell survival. trypan blue passively diffuses into cells whose membranes are compromised, but it is effectively blocked from entering healthy cells1. The quotient of the living cells and the total cells represents the percent viability, which indicates the efficacy of the treatment. The most si....
1. Cytotoxicity Assay: Setup
The aforementioned protocol has been developed using OCI-AML2 cells, which were taken as a representative acute myeloid leukemia cell line. AML is characterized by abnormal proliferation of undifferentiated and non-functional hematopoietic cells in the bone marrow26. Despite recent developments in AML targeted therapy, the standard of care has remained unchanged for several decades, and consists of induction therapy (typically comprised of three days of anthracycline, e.g., daunorubicin, idar.......
Although the protocol for Hoechst/PI cytotoxicity assay is robust and requires comparatively little hands-on time, there are several experimental details that are very important to ensure accurate results. First, it is essential to make sure that the concentration of DMSO remains below 0.5% (v/v). It is generally agreed that exposure to even low doses of DMSO can substantially alter the morphology and attachment of cells and significantly delay cell cycle progression39,
NVK, a CPRIT scholar in Cancer Research, thanks the Cancer Prevention and Research Institute of Texas (CPRIT) for their generous support, CPRIT grant RR150044. This work was also supported by the Welch Foundation Research Grant C-1930, and by the National Institutes of Health R35 GM129294 awarded to NVK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
....Name | Company | Catalog Number | Comments |
2-Deoxy-D-glucose/2-DG | Chem-Impex | 50-519-067 | |
3-bromo-pyruvate | Alfa Aesar | 1113-59-3 | |
96-Well plates | Greiner Bio-One | 655090 | Black or clear flat-bottomed 96-well plates |
Alamar blue HS cell viability reagent (100mL)Â | Thermo Fisher | A50101 | |
Countess II automated cell counter | Thermo Fisher | ||
Cytation 5 Cell Imaging Multi-Mode Reader | BioTek | ||
Hoechst 33342 | Thermo Fisher | 62249 | 20 mM solution; final concentration 1:1,000 |
HyClone fetal bovine serum | GE Healthcare | #25-514 | |
m-chlorophenylhydrazone/CCCP | Sigma Aldrich | C2759 | |
PBS tablets | Thermo Fisher | BP2944100 | 1 tablet + 200 mL of sterile water = 1x PBS solution |
Penicillin-Streptomycin-Glutamine (100X) | Gibco | 10378016 | |
Pierce LDH assay kit | Thermo Fisher | 50-103-5952 | |
Propidium Iodide | Thermo Fisher | 50-596-072 | Dry powder; stock 1 mg/mL in PBS; final concentration 5 µg/mL (leukemia cells), 1 µg/mL (normal PBMCs) |
Rotenone | Ark Pharm | AK115691 | |
RPMI-1640 Medium With L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture | Sigma Aldrich | R8758-500ML | |
Thiazolyl blue tetrazolium bromide | ACROS Organics | AC158990010 | |
Trypan blue stain (0.4%) | Gibco | 15250-061 | |
Cell lines | |||
K562 | ATCC | CCL-243 | CML cell line |
MOLM-13 | ATCC | AML cell line | |
MOLT-4 | ATCC | CRL-1582 | ALL cell line |
OCI-AML2 | ATCC | AML cell line |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved