A subscription to JoVE is required to view this content. Sign in or start your free trial.
Stroke is a global issue with minimal treatment options and no current clinical therapy for regenerating the lost brain tissue. Here we describe methods for creating precise photothrombotic stroke in the motor cortex of rodents and subsequent injection of hydrogel biomaterials to study their effects on tissue regeneration after stroke.
Stroke is the leading cause of disability and the fifth-leading cause of death in the United States. Approximately 87% of all strokes are ischemic strokes and are defined as the sudden blockage of a vessel supplying blood to the brain. Within minutes of the blockage, cells begin to die and result in irreparable tissue damage. Current therapeutic treatments focus on clot removal or lysis to allow for the reperfusion and prevent more severe brain damage. Although transient brain plasticity may salvage some of the damaged tissue over time, significant fractions of patients are left with neurological deficits that will never resolve. There is a lack of therapeutic options to treat neurological deficits caused by stroke, emphasizing the need to develop new strategies to treat this growing patient population. Injectable biomaterials are currently being designed to enhance brain plasticity and improve endogenous repair through the delivery of active agents or stem cells. One method to test these approaches is to utilize a rodent stroke model, inject the biomaterial into the stroke core, and assess repair. Knowing the precise location of the stroke core is imperative for the accurate treatment after stroke, therefore, a stroke model that results in a predictable stroke location is preferable to avoid the need for imaging prior to injection. The following protocol will cover how to induce a photothrombotic stroke, how to inject a hydrogel in a controlled and precise manner, and how to extract and cryosection the brain while keeping the biomaterial intact. In addition, we will highlight how these same hydrogel materials can be used for the co-delivery of stem cells. This protocol can be generalized to the use of other injectable biomaterials into the stroke core.
Stroke is the leading cause of disability and the fifth-leading cause of death in the United States1. Approximately 87% of all strokes are ischemic, while a majority of the remaining 13% are hemorrhagic2. An ischemic stroke is defined as the blockage of blood flow in an artery to the surrounding tissue. This occlusion results in oxygen deprivation and subsequent necrosis that often leads to permanent disability in surviving patients. While there has been a decrease in the mortality rate of stroke3, its prevalence is expected to increase to 3.4 million people by 20304. This ....
The experiments were conducted in accordance with IUCAC at Duke University and University of California Los Angeles. 8 to 12-week-old male C57Bl/6J mice were used in this study. The animals were housed under controlled temperature (22 ± 2 °C), with a 12 h light-dark cycle period and access to pelleted food and water ad libitum.Analgesia and sedation protocols are described as approved by the IUCAC but might differ from protocols used in other laboratories.
Animals may be prematu.......
The aim of this method was to demonstrate how to inject biomaterials into the brain after stroke. A photothrombotic model with rose bengal and a 520 nm laser was used for controlled orientation of the stroke lesion in both size and location. Five days after stroke the infarct could be visualized during surgery (Figure 1B) and by TTC and imaging IHC stained slides (Figure 2). An increase in laser diameter with a 2x lens lead to a visual increase in the stroke les.......
Here we demonstrate an easily reproducible, minimally invasive, permanent stroke model and describe how to inject a biomaterial into the infarct five days after stroke. The use of the photothrombotic dye Rose Bengal and a 520 nm collimated laser connected to the stereotaxic device gives us the ability to position the stroke at the motor cortex of the mouse with enhanced precision. Five days after stroke, the location of the infarct is visible by eye at the center of irradiation, 2.0 mm medio-lateral to the bregma. Hydrog.......
We like to acknowledge the National Institutes of Health and the National Institute of Neurological Disorders and Stroke for funding (R01NS079691).
....Name | Company | Catalog Number | Comments |
10% Normal Goat Serum | VWR | 100504-028 | For blocking buffer |
2-ply alcohol pre pad, Sterile, Medium | Medline | MDS090735 | |
25uL Hamilton Syringe 702RN, no needle | Fishcer Scientific | 14824663 | Syringes used to inject biomaterials |
25uL Positive displacement pipette | Gilson | M-25 | |
2x Beam Expander, 400-650nm | Thorlabs | GBE02-A | Laser beam expander |
Adjustable Stage Platform | Kopf Instruments | 901 | |
Anti-Glucose Transporter GLUT1 antibody, rabbit | Abcam | ab113435 | |
Anti-Iba1 Antibody, goat | abcam | ab5076 | |
BD Vacutainer Safety-Lok Blood Collection Sets. 25G, 12" | Medsupply | 367294 | For perfusions |
BKF12- Matte Black Aluminum Foil | Thorlabs | BKF12 | To cover anything that is reflective when using laser. |
Bone Iris Mini Scissors - 3-1/2" | Sklar surgical instruments | 64-2035 | |
C57BL/6 Mice | Jackson Laboratory | 000664 | 8-12 weeks of age |
Cage Assembly Rob | Thorlabs | ER3-P4 | 3" Long, diameter 6mm, 4 pack - for attaching laser to sterotax |
Carbon Steel Burrs -0.5mm Diameter | Fine Science Tools | 19007-05 | For creating burr hole |
Chromium(III) potassium sulfate dodecahydrate | VWR | EM1.01036.0250 | |
Compact Controller for pigtailed lasers | Thorlabs | CLD1010LP | |
Cotton Swabs | VWR | 89031-288 | |
CP 25 pipette tips | Gilson | F148012 | |
Donkey anti-goat IgG H&L (488) | abcam | ab150129 | |
Donkey Anti-rabbit IgG H&L (647) | abcam | ab150075 | |
Donkey Anti-rat IgG H&L (555) | abcam | ab150154 | |
EMS DPX Mountant | Elecron Microscopy Sciences | 13512 | Mounting solution for slides |
EMS Gelatin Powder Type A 300 Bloom | Electron Microscopy Sciences | 16564 | For gelatin coating slides |
EMS Paraformaldehyde, Granular | VWR | 100504-162 | For making 45 PFA |
ESD Worstation kit | Elmstat | WSKK5324SB | Need for setting up the laser |
Fiber Bench Wall Plate, unthreaded | Thorlabs | HCA3 | Need for connecting laser to Kopf shaft |
FiberPort | Thorlabs | PAF-X-5-A | FC/APC& APC, f=4.6mm, 350-700nm, diameter 0.75mm |
Fine Scissors - straight/sharp-blunt/10cm | Fine Science Tools | 14028-10 | |
GFAP Antibody, rat | Thermo Fisher Scientific | 13-0300 | |
Heating Plate | Kopf Instruments | HP-4M | |
ImmEdge Hydrophobic Barrier Pen | Vector Laboratories | H-4000 | For staining slides |
IMPAC 6-Integrated Multi Patient Anesthesia Center | VetEquip | 901808 | |
Iodine Prep Pads | Medx Supple | MED MDS093917H | |
Jewlers Forceps #5 | GFS chemicals | 46085 | |
Laser Safety Glasses | Thorlabs | LG10B | Amber Lenses, 35% Visible light (googles versions available too) |
M27-1084 Powerful LED Dual Goose-neck | United Scope | LED-11C | |
Medical USP Grade Oxygen | Airgas | OX USP250 | |
Miltex Adson Dressing Forceps, Disecting-grade | Intefra Miltex | V96-118 | |
Mini Cord/Cordless Small Animal Trimmer | Harvard aparatus | 72-6110 | |
Mini-pump variable flow | Thomas Scientific | 70730-064 | Pump for perfusions |
Mouse Brain Matrices, Coronal Slices, 1mm | Kent Scientific | RBMA-200c | For TTC slices |
Mouse Gas Anethesia Head Holder | Kopf Instruments | 923-B | |
Nanojet Control Box | Chemyx | 10050 | |
Nanojet pump header | Chemxy | 10051 | Attach to stereotaxic device for injecting biomaterial |
Needle RN 30G PT STY 3, 0.5 inch | Fishcer Scientific | NC9459562 | |
Non-rupture ear bars 60º | Kopf Instruments | 922 | |
PBS buffer pH 7.4 | VWR | 97062 338 | |
Pigtaled laser 520 nm, 100mW, 5G Pin | Thorlabs | LP520-MF100 | |
Positive charge glass slides | Hareta | AHS90-WH | |
Power engergy meter | Thorlabs | PM100D | Used to measure your mW laser output |
Puralube Vet Ointment | Dr. Foster Smith | 9N-76855 | |
Rectal Probe Mouse | kopf Instruments | Ret-3-ISO | |
Rose Bengal Dye 95% | Sigma-Aldrich | 330000-5G | |
Shaft Modified 8-32 threaded hole 1/2" depth | Kopf Instruments | 1770-02 | For connecting laser to sterotaxic device |
Slim photodiode power sensor | Thorlabs | S130VC | Used with power energy meter |
SM1-Threaed 30 mm Cage Plate 0.35" thick 2 Retaining | Thorlabs | CP02 | For connecting laser expander |
Sol-M U-100 Insuline syringe with 1/2 unit markings 0.5 mL | VWR | 10002-726 | To inject rose bengal |
StainTray Slide Staining System | Simport Scientific | M920-2 | For staining slides |
Sterotaxic device | Kopf Instruments | 940 | Small Animal Stereotaxic Instrument |
Student Adson Forceps -1x2 teeth | Fine Science Tools | 91127-12 | |
Student Fine Forceps - straight/broad Shanks | Fine Science Tools | 91113-10 | |
Temperature Controller | Kopf Instruments | TCAT-2LV | |
Tissue-Tek OCT compound | VWR | 25608-930 | |
Triton X-100 | VWR | 97063-864 | |
Upper Bracket Clamp | Kopf Instruments | 1770-c | For connecting laser to sterotaxic device |
Vetbond Tissue Adhessive 3mL | Santa Cruz Biotechnology | sc-361931 | |
Vogue Professional My Manicurist | Bargin Source | 6400 | For Burrs |
VWR Bead Sterilizers | VWR | 75999-328 | |
Tissue Tek OCT compound | Sakura | 4583 | For tissue embeding |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved