A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Presented here is a protocol for the isolation and amplification of aerobic and facultative anaerobic mouse conjunctival commensal bacteria using a unique eye swab and culture-based enrichment step with subsequent identification by microbiological based methods and MALDI-TOF mass spectrometry.
The ocular surface was once considered immune privileged and abiotic, but recently it appears that there is a small, but persistent commensal presence. Identification and monitoring of bacterial species at the ocular mucosa have been challenging due to their low abundance and limited availability of appropriate methodology for commensal growth and identification. There are two standard approaches: culture based or DNA sequencing methods. The first method is problematic due to the limited recoverable bacteria and the second approach identifies both live and dead bacteria leading to an aberrant representation of the ocular space. We developed a robust and sensitive method for bacterial isolation by building upon standard microbiological culturing techniques. This is a swab-based technique, utilizing an “in-lab” made thin swab that targets the lower conjunctiva, followed by an amplification step for aerobic and facultative anaerobic genera. This protocol has allowed us to isolate and identify conjunctival species such as Corynebacterium spp., Coagulase Negative Staphylococcus spp., Streptococcus spp., etc. The approach is suitable to define commensal diversity in mice under different disease conditions.
The aim of this protocol is to enhance specific isolation of viable and rare aerobic and facultative anaerobic microbes from the ocular conjunctiva to characterize the ocular microbiome. Extensive studies have profiled commensal mucosal communities on the skin, gut, respiratory and genital tracts and show that these communities influence the development of the immune system and response1,2,3. Ocular commensal communities have been shown to change during certain disease pathologies, such as Dry eye disease4, Sjogren’s syndrome5 and diabetes6. Yet, the ability to define a typical ocular surface commensal community is hampered by their relatively low abundance compared to the other mucosal sites6,7,8. This prompts a controversy over whether there is a resident ocular microbiome and if it exists, whether it differs from the skin microbiome and consequently, its local effect on the innate immune system development and response. This protocol can help resolve this question.
Generally, approaches to define the ocular commensal niche are based on sequencing and culture-based techniques4,7,9. 16 S rDNA sequencing and BRISK analysis7 show a broader diversity than culture-based techniques, but are unable to differentiate between live and dead microbes. Since the ocular surface is hostile to many microbes due to tear film’s anti-microbial properties4 generating a large array of DNA fragments, DNA based approaches will detect these artifacts which may skew the data toward identification of dead bacteria as resident commensals rather than contaminants. This results in aberrant commensal identification and characterization of the ocular space as being higher in microbe abundance and diversity10. This makes it difficult to define the resident ocular microbiome via DNA based methods. Whereas, standard culture-based techniques are unable to detect commensals because the load is too low11. Our method improves upon standard practices by using a thin swab that can target the conjunctiva, thus avoiding contamination from neighboring skin, as well as the concept that viable organisms can be enriched by brief culture in nutrient dense media with the goal of resuscitating viable but non-culturable, as well as, enriching for rare viable microbes.
The results, relative abundance of ocular commensals per eye swab, characterize the conjunctiva resident microbiome and are important for comparative purposes. Our data shows that there is a difference between skin and conjunctival microbiota, as well as greater diversity with increased age and a sex specific difference in abundance. Furthermore, this approach has reproducibly found commensal differences in knock-out mice12. This protocol can be applied to describe the ocular microbiome which may vary due to caging practices, geography, or disease state, as well as the local effects of commensal metabolites and products on immune system development and response.
All procedures involving mice follow the Institutional Animal Care and Use Committee guidelines. Follow laboratory safety guidelines (as directed by your Institutional Environmental Health and Safety department) when working with microorganisms and potentially contaminated materials. Use appropriate waste receptacles and decontamination procedures prior to disposal of potentially biohazard contaminated materials.
1. Eye swab preparation, work field set-up, mouse eye swabbing and sample enrichment
2. Master plate, characterization, and identification of ocular microbes
Representative results for an eye swab plate demonstrating different methods for plating are pictured in Figure 3A showing morphologically diverse isolates from C57BL/6 mouse. For each distinct isolate, the colonies were counted in the strip and the relative abundance, unique Colony Forming Units (CFUs) per eye swab, calculated and plotted for comparison purposes. For microbiological characterization, bacteria were picked from individual mouse eye swab plates to produce a master TSA plate (c...
Due to the paucibacterial state of the ocular surface, many laboratories have had difficulty isolating ocular commensals7,20, resulting in low number of samples with growth, low abundance and low diversity8. This method significantly improves upon standard culture practices4,21 by the addition of an enrichment step, as well as a redesigned eye swab and identification by MALDI-TOF M...
No conflict of interest to disclose.
Funding from P30 DK034854 supported VY, LB and studies in the Massachusetts Host-Microbiome Center and funding from NIH/NEI R01 EY022054 supported MG.
Name | Company | Catalog Number | Comments |
0.1 to 10 µl pipet tip | USA Scientific | 1110-300 | autoclave before use |
0.5 to 10 µl Eppendorf pipet | Fisher Scientific | 13-690-026 | |
1 ml syringe | Fisher Scientific | BD309623 | 1 syringe for each eye swab group |
1.5 ml Eppendorf tubes | USA Scientific | 1615-5500 | autoclave before use |
1000 µ ml pipet tip | USA Scientific | 1111-2021 | autoclave before use |
200 to 1000µl Gilson pipetman (P1000) | Fisher Scientific | F123602G | |
25 G needle | Fisher Scientific | 14-826AA | 1 needle per eye swab group |
3 % Hydrogen Peroxide | Fisher Scientific | S25359 | |
37 ° C Incubator | Lab equipment | ||
70 % Isopropanol | Fisher Scientific | PX1840-4 | |
Ana-Sed Injection (Xylazine 100 mg/ml) | Santa Cruz Animal Health | SC-362949Rx | |
BD BBL Gram Stain kit | Fisher Scientific | B12539 | |
Bunsen Burner | Lab equipment | ||
Clean paper towels | Lab equipment | ||
Cotton Batting/Sterile rolled cotton | CVS | ||
Disposable 1 ml Pipets | Fisher Scientific | 13-711-9AM | for Gram stain and catalase tests |
E.coli | ATTC | ATCC 8739 | |
Glass slides | Fisher Scientific | 12-550-A3 | for Gram stain and catalase tests |
Ketamine (100mg/ml) | Henry Schein | 9950001 | |
Mac Conkey Agar Plates | Fisher Scientific | 4321270 | store at 4 °C until ready to use |
Mannitol Salt Agar | Carolina Biological Supply | 784641 | Prepare plates according to mfr's instructions, store at 4 °C for 1 week |
Mice | Jackson Labs | C57/BL6J | |
Petri Dishes | Fisher Scientific | 08-757-12 | for Mannitol Salt agar plates |
RPI Brain Heart Infusion Media | Fisher Scientific | 50-488525 | prepare according to directions and autoclave |
SteriFlip (0.22 µm pore size polyester sulfone) | EMD/Millipore, Fisher Scientifc | SCGP00525 | to sterilize anesthesia |
Sterile Corning Centrifuge Tube | Fisher Scientific | 430829 | anesthesia preparation |
Sterile mouse cage | Lab equipment | ||
Tooth picks (round bamboo) | Kitchen Essentials | autoclave before use and swab preparation | |
Trypticase Soy Agar II with 5% Sheep's Blood Plates | Fisher Scientific | 4321261 | store at 4 °C until ready to use |
Vitek target slide | BioMerieux Inc. Durham,NC | ||
Vitek-MS | BioMerieux Inc. Durham,NC | ||
Vitek-MS CHCA matrix solution | BioMerieux Inc. Durham, NC | 411071 | |
Single use eye drops | CVS Pharmacy | Bausch and Lomb Soothe Lubricant Eye Drops, 28 vials, 0.02 fl oz. each |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved