A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a simple method to isolate highly viable adipose progenitor cells from mouse epididymal fat pads using fluorescence activated cell sorting.
Obesity and metabolic disorders such as diabetes, heart disease, and cancer, are all associated with dramatic adipose tissue remodeling. Tissue-resident adipose progenitor cells (APCs) play a key role in adipose tissue homeostasis and can contribute to the tissue pathology. The growing use of single cell analysis technologies – including single-cell RNA-sequencing and single-cell proteomics – is transforming the stem/progenitor cell field by permitting unprecedented resolution of individual cell expression changes within the context of population- or tissue-wide changes. In this article, we provide detailed protocols to dissect mouse epididymal adipose tissue, isolate single adipose tissue-derived cells, and perform fluorescence activated cell sorting (FACS) to enrich for viable Sca1+/CD31-/CD45-/Ter119- APCs. These protocols will allow investigators to prepare high quality APCs suitable for downstream analyses such as single cell RNA sequencing.
Adipose tissue plays a key role in energy metabolism. Excess energy is stored in the form of lipids, and adipose tissue is capable of significant expansion or retraction depending on nutritional status and energetic demand. Expansion of adipose tissue can result from an increase in adipocyte size (hypertrophy) and/or from an increase in adipocyte number (hyperplasia); the latter process tightly regulated by proliferation and differentiation of adipose progenitor cells1,2. During obesity, adipose tissue excessively expands, and tissue dysfunction – including hypoxia, inflammation, and insulin resistance – often develops3,4. These complications are risk factors to many chronic diseases including hypertension, diabetes, cardiovascular diseases, stroke, and cancer5. Hence, limiting uncontrolled adipose tissue expansion and mitigating adipose tissue pathologies are top biomedical research priorities. During adipose tissue expansion, resident adipose tissue-derived stem cells (ASCs) proliferate and differentiate sequentially into preadipocytes (committed progenitor cells) and then into mature adipocytes6. Recent single-cell RNA-sequencing (scRNA-seq) studies show that these adipose progenitor cell (APC) populations (ASCs and preadipocytes) exhibit substantial molecular and functional heterogeneity7,8,9,10,11,12. For example, ASCs display a reduced adipogenic differentiation capacity, while also exhibiting higher proliferation and expansion capabilities, compared to preadipocytes7. Further molecular differences are reported within ASC and preadipocyte populations, although the functional relevance of these differences remains unclear7. Together, these data highlight the complexity of the adipose progenitor cell pool and underscore the need to develop and standardize tools to better understand and manipulate these critical cell populations.
This protocol details the isolation of high viability Sca1+ adipose progenitor cell populations from mouse epididymal fat pads that are suitable for sensitive downstream analyses, including single-cell studies (scRNA-sequencing) and cell culture. Isolation and dissociation of epididymal fat pads was performed as previously described7,13 with slight modifications that improve the viability of isolated APCs. In brief, dissociated cells from epididymal fat pads are stained with antibodies against Sca1, a marker for both ASCs and preadipocytes6,7, and other lineage (Lin) markers: Ter119 (erythroid cells), CD31 (endothelial cells), and CD45 (leukocytes). Viable Sca1+/Ter119-/CD31-/CD45-/DAPI- cells are then sorted by fluorescence activated cell sorting (FACS). Importantly, this protocol was validated by successful isolation and analysis of viable Sca1+/Lin- adipose progenitor cells reported in a recent single cell RNA sequencing study that identified functionally heterogeneous subpopulations within ASCs and preadipocytes7.
All animal experimental procedures were performed under approval by the Mayo Clinic Institutional Animal Care and Use Committee.
1. Solution preparation
2. Dissection of epididymal fat pad and tissue dissociation
3. Antibody labeling and fluorescence activated cell sorting (FACS)
Four-month-old male FVB mice were used in this experiment. After exclusion of debris and doublets using FSC/SSC plots, viable cells (DAPI- population) were gated, followed by the selection of APC+/FITC- population (Figure 1). DAPI, APC, and FITC gates were drawn based on the unstained control. Gating strategies are shown in Figure 1.
After 1 h of sorting, the quality of isolation was quantitatively eva...
Single cell RNA sequencing (scRNA-seq) is rapidly gaining traction as a powerful tool to simultaneously study diverse cell populations at the single cell level. Due to high costs associated with sample preparation and high throughput sequencing, it is imperative to optimize cellular inputs (high viability and purity) to increase the likelihood of experimental success. Some cell preparation protocols rely on removal of dead cells and debris using low-spin washes and column-based separation without FACS sorting
The authors have nothing to disclose.
We acknowledge the Mayo Clinic Microscopy Cell Analysis Core Flow Cytometry Facility for assistance with FACS sorting.
Name | Company | Catalog Number | Comments |
1.7 mL microcentrifuge tube | VWR | 87003-294 | |
13 mL culture tube | Thermo Fisher Scientific | 50-809-216 | |
15 mL conical tube | Greiner Bio-one | 188 271 | |
5 mL test tube with cell strainer snap cap | Thermo Fisher Scientific | 08-771-23 | |
50 mL conical tube | Greiner Bio-one | 227 261 | |
70 µm cell strainer | Thermo Fisher Scientific | 22-363-548 | |
Anti-CD31-FITC antibody | Miltenyi Biotec | 130-102-519 | |
Anti-CD45-FITC antibody | Miltenyi Biotec | 130-102-491 | |
Anti-Sca1-APC antibody | Miltenyi Biotec | 130-102-833 | |
Anti-Ter119-FITC antibody | Miltenyi Biotec | 130-112-908 | |
BSA | Gold Biotechnology | A-420-500 | |
Collagenase type II | Thermo Fisher Scientific | 17101-015 | |
DAPI | Thermo Fisher | D1306 | |
Dulbecco's phosphate-buffered saline (DPBS) | Thermo Fisher Scientific | 14190-144 | |
F-12 medium | Thermo Fisher Scientific | 11765-054 | |
FcR blocking reagent | Miltenyi Biotec | 130-092-575 | |
Hanks' balanced salt solution (HBSS) | Thermo Fisher Scientific | 14025-092 | |
Horse serum | Thermo Fisher Scientific | 16050-122 | |
Penicillin-streptomycin | Thermo Fisher Scientific | 15140-122 | |
Propidium iodide solution | Miltenyi Biotec | 130-093-233 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved