A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This simple and highly adaptable system device for the inhalation of high-concentration nitric oxide (NO) gas does not require mechanical ventilators, positive pressure, or high gas flows. Standard medical consumables and a snug-fitting mask are used to safely deliver NO gas to spontaneously breathing subjects.

Abstract

Nitric Oxide (NO) is administered as gas for inhalation to induce selective pulmonary vasodilation. It is a safe therapy, with few potential risks even if administered at high concentration. Inhaled NO gas is routinely used to increase systemic oxygenation in different disease conditions. The administration of high concentrations of NO also exerts a virucidal effect in vitro. Owing to its favorable pharmacodynamic and safety profiles, the familiarity in its use by critical care providers, and the potential for a direct virucidal effect, NO is clinically used in patients with coronavirus disease-2019 (COVID-19). Nevertheless, no device is currently available to easily administer inhaled NO at concentrations higher than 80 parts per million (ppm) at various inspired oxygen fractions, without the need for dedicated, heavy, and costly equipment. The development of a reliable, safe, inexpensive, lightweight, and ventilator-free solution is crucial, particularly for the early treatment of non-intubated patients outside of the intensive care unit (ICU) and in a limited-resource scenario. To overcome such a barrier, a simple system for the non-invasive NO gas administration up to 250 ppm was developed using standard consumables and a scavenging chamber. The method has been proven safe and reliable in delivering a specified NO concentration while limiting nitrogen dioxide levels. This paper aims to provide clinicians and researchers with the necessary information on how to assemble or adapt such a system for research purposes or clinical use in COVID-19 or other diseases in which NO administration might be beneficial.

Introduction

NO inhalation therapy is regularly used as a life-saving treatment in several clinical settings1,2,3. In addition to its well-known pulmonary vasodilator effect4, NO displays a broad antimicrobial effect against bacteria5, viruses6, and fungi7, particularly if administered at high concentrations (>100 ppm).8 During the 2003 Severe Acute Respiratory Syndrome (SARS) outbreak, NO showed potent antiviral activity in vitro and demonstrated therapeutic efficac....

Protocol

NOTE: See the Table of Materials for the materials needed to assemble the delivery system. Sources of medical air, O2, and NO gases should also be available on site. The device has been developed for investigation use in research protocols that underwent rigorous review by the local Institutional Review Board (IRB). Under no circumstances should providers operate solely based on the indications included in this manuscript, assembling and using this device without seeking prior appropriate institutional regulatory approval. Starting from the proximal end of the device, assemble the pieces in the following order (Figure 1....

Results

A 33-year-old respiratory therapist working at the ICU at MGH during the surge of ICU admission for COVID-19 volunteered to receive NO as part of the trial involving healthcare workers15,19. The trial tested the efficacy of 160 ppm of NO as a virucidal agent, thereby preventing disease occurrence in lungs at risk for viral contamination. The first session of the inhalation prophylaxis was administered before starting a shift throu.......

Discussion

Given the increasing interest in NO gas therapy for non-intubated patients, including those with COVID-198, the present report describes a novel custom device and how to assemble its components to deliver NO at concentrations as high as 250 ppm. The proposed system is built out of inexpensive consumables and safely delivers a reproducible concentration of NO gas in spontaneously breathing patients. The ease of assembly and use, together with the safety data published elsewhere16<.......

Disclosures

L.B. receives salary support from K23 HL128882/NHLBI NIH as a principal investigator for his work on hemolysis and nitric oxide. L.B. receives technologies and devices from iNO Therapeutics LLC, Praxair Inc., Masimo Corp. L.B. receives a grant from iNO Therapeutics LLC. A.F. and L.T. reported funds from the German Research Foundation (DFG) F.I. 2429/1-1; TR1642/1-1. WMZ receives a grant from NHLBI B-BIC/NCAI (#U54HL119145), and he is on the scientific advisory board of Third Pole Inc., which has licensed patents on electric NO generation from MGH. All other authors have nothing to declare.

Acknowledgements

This study was supported by the Reginald Jenney Endowment Chair at Harvard Medical School to L.B., by L.B. Sundry Funds at MGH, and by laboratory funds of the Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine at MGH.

....

Materials

NameCompanyCatalog NumberComments
90° ventilator elbow connector without ports 22 mm ID x 22 mm ODTeleflex, Wayne, PA, USA1641
Aerosol tee connector: horizontal ports 22 mm OD, vertical port 11 mm ID/22 mm ODTeleflex, Wayne, PA, USA1077
Flexible patient connector for endotracheal or tracheostomy tube (15 mm OD x 22 mm OD/15 mm ID, length 5 cm to 6.5 cm)Vyaire Medical Inc., Mettawa, IL, USA3215
High-efficiency particulate air (highly hydrophobic bacterial/viral filter,  HEPA class 13) filter (22 mm ID/15 mm OD x 22 mm OD/15 mm ID connector)Teleflex, Wayne, PA, USA28012
Latex-free 3-L breathing reservoir bagCareFusion, Yorba Linda, CA, USA5063NL
Nitric Oxide tank 800 ppm medical-grade (size AQ aluminum cylinders containing 2239 L at STP of 800 ppm NO gas balanced with nitrogen, volume 2197 L)Praxair, Bethlehem PA, USAMM NO800NI-AQ
One-way valve 22 mm male/female (arrow pointing towards female end)Teleflex, Wayne, PA, USA1664N=2 inspiratory limb (upward arrow)
One-way valve 22 mm male/female (arrow pointing towards male end)Teleflex, Wayne, PA, USA1665N=1 expiratory limb (downward arrow)
Rad-57 Handheld Pulse Oximeter with Rainbow SET TechnologyMasimo Corporation, Irvine, CA, USA3736Including SpMet Option
Scavenger (ID = 60 mm, internal length = 53 mm, volume = 150 mL) containing 100 g of calcium hydroxideSpherasorb, Intersurgical Ltd, Berkshire, UK
Silicon rubber flexible connectors 22 mm F x 22 mm FTri-anim Health Services, Dublin, OH, USA301-9000
Snug-fit standard face mask of appropriate size
Star Lumen standard medical grade vynil oxygen tubing with universal connectorsTeleflex, Morrisville, NC, USA1115Variable length according to distance from source of gas. 2.1 m length used in protocol
Straight connector with a 7.6 mm sampling port (15 mm OD x 15 mm ID/22 mm OD)Mallinckrodt, Bedminster, NJ, USA502041
Two-step adapter (15 mm to 22 mm)Airlife Auburndale, FL, USA1824
Y-piece connector with 7.6 mm ports (22 mm to 22 mm and 15 F)Vyaire Medical Inc., Mettawa, IL, USA1831

References

  1. Roberts, I. D., Fineman, J. F., Zapol, W. M. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. Pneumologie. 52 (4), 239 (1998).
  2. Rossaint, R., et al. Inhaled nitric oxide for the adult respi....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Nitric OxideInhalation MaskHigh dose Nitric OxideCOVID 19Lung ColonizationCystic FibrosisPatient InterfaceOne way ValvesY piece ConnectorScavenging ChamberCalcium HydroxideOxygen SourceNitric Oxide Reservoir SystemAerosol T pieceVentilator Elbow Connector

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved