JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Engineering

Study of Protein Dynamics via Neutron Spin Echo Spectroscopy

Published: April 13th, 2022

DOI:

10.3791/61862

1NSD, Oak Ridge National Laboratory

Abstract

Most human body proteins' activity and functionality are related to configurational changes of entire subdomains within the protein crystal structure. The crystal structures build the basis for any calculation that describes the structure or dynamics of a protein, most of the time with strong geometrical restrictions. However, these restrictions from the crystal structure are not present in the solution. The structure of the proteins in the solution may differ from the crystal due to rearrangements of loops or subdomains on the pico to nanosecond time scale (i.e., the internal protein dynamics time regime). The present work describes how slow motions on timescales of several tens of nanoseconds can be accessed using neutron scattering. In particular, the dynamical characterization of two major human proteins, an intrinsically disordered protein that lacks a well-defined secondary structure and a classical antibody protein, is addressed by neutron spin echo spectroscopy (NSE) combined with a wide range of laboratory characterization methods. Further insights into protein domain dynamics were achieved using mathematical modeling to describe the experimental neutron data and determine the crossover between combined diffusive and internal protein motions. The extraction of the internal dynamic contribution to the intermediate scattering function obtained from NSE, including the timescale of the various movements, allows further vision into the mechanical properties of single proteins and the softness of proteins in their nearly natural environment in the crowded protein solution.

Explore More Videos

Keywords Neutron Spin Echo Spectroscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved