JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biochemistry

Preparation of Site-Specific Cytotoxic Protein Conjugates via Maleimide-thiol Chemistry and Sortase A-Mediated Ligation

Published: January 5th, 2021

DOI:

10.3791/61918

1Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 2Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw

Abstract

Cancer is currently the second most common cause of death worldwide. The hallmark of cancer cells is the presence of specific marker proteins such as growth factor receptors on their surface. This feature enables development of highly selective therapeutics, the protein bioconjugates, composed of targeting proteins (antibodies or receptor ligands) connected to highly cytotoxic drugs by a specific linker. Due to very high affinity and selectivity of targeting proteins the bioconjugates recognize marker proteins on the cancer cells surface and utilize receptor-mediated endocytosis to reach the cell interior. Intracellular vesicular transport system ultimately delivers the bioconjugates to the lysosomes, where proteolysis separates free cytotoxic drugs from the proteinaceous core of the bioconjugates, triggering drug-dependent cancer cell death. Currently, there are several protein bioconjugates approved for cancer treatment and large number is under development or clinical trials.

One of the main challenges in the generation of the bioconjugates is a site-specific attachment of the cytotoxic drug to the targeting protein. Recent years have brought a tremendous progress in the development of chemical and enzymatic strategies for protein modification with cytotoxic drugs. Here we present the detailed protocols for the site-specific incorporation of cytotoxic warheads into targeting proteins using a chemical method employing maleimide-thiol chemistry and an enzymatic approach that relies on sortase A-mediated ligation. We use engineered variant of fibroblast growth factor 2 and fragment crystallizable region of human immunoglobulin G as an exemplary targeting proteins and monomethyl auristatin E and methotrexate as model cytotoxic drugs. All the described strategies allow for highly efficient generation of biologically active cytotoxic conjugates of defined molecular architecture with potential for selective treatment of diverse cancers.

Explore More Videos

Cancer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved