A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe the production of mixed cultures of astrocytes and oligodendrocyte precursor cells derived from fetal or adult neural stem cells differentiating into mature oligodendrocytes, and in vitro modeling of noxious stimuli. The coupling with a cell-based high-content screening technique builds a reliable and robust drug screening system.
The main hurdle in developing drug screening techniques for assessing the efficacy of therapeutic strategies in complex diseases is striking a balance between in vitro simplification and recreating the complex in vivo environment, along with the main aim, shared by all screening strategies, of obtaining robust and reliable data, highly predictive for in vivo translation.
In the field of demyelinating diseases, the majority of drug screening strategies are based on immortalized cell lines or pure cultures of isolated primary oligodendrocyte precursor cells (OPCs) from newborn animals, leading to strong biases due to the lack of age-related differences and of any real pathological condition or complexity.
Here we show the setup of an in vitro system aimed at modeling the physiological differentiation/maturation of neural stem cell (NSC)-derived OPCs, easily manipulated to mimic pathological conditions typical of demyelinating diseases. Moreover, the method includes isolation from fetal and adult brains, giving a system which dynamically differentiates from OPCs to mature oligodendrocytes (OLs) in a spontaneous co-culture which also includes astrocytes. This model physiologically resembles the thyroid hormone-mediated myelination and myelin repair process, allowing the addition of pathological interferents which model disease mechanisms. We show how to mimic the two main components of demyelinating diseases (i.e., hypoxia/ischemia and inflammation), recreating their effect on developmental myelination and adult myelin repair and taking all the cell components of the system into account throughout, while focusing on differentiating OPCs.
This spontaneous mixed model, coupled with cell-based high-content screening technologies, allows the development of a robust and reliable drug screening system for therapeutic strategies aimed at combating the pathological processes involved in demyelination and at inducing remyelination.
In the central nervous system (CNS), myelin forming cells (oligodendrocytes, OLs) and their precursors (oligodendrocyte precursor cells, OPCs) are responsible for developmental myelination, a process which occurs during the peri- and post-natal periods, and for myelin turnover and repair (remyelination) in adulthood1. These cells are highly specialized, interacting anatomically and functionally with all the other glial and neuronal components, making them a fundamental part of CNS structure and function.
Demyelinating events are involved in different CNS injuries and diseases2, and mainly act ....
All animal protocols described herein were carried out according to European Community Council Directives (86/609/EEC) and comply with the guidelines published in the NIH Guide for the Care and Use of Laboratory Animals.
1. Solutions and reagents
The first phase of the culture may vary in duration, depending on seeding density and on whether the spheres are of fetal or adult origin. Moreover, oligospheres display a reduced population doubling compared to neurospheres (Figure 1B). Moreover, spheres production from adult tissue is slower and it may take 2–3 weeks to generate oligospheres compared to fetal that may take 1–2 weeks, depending on the seeding density.
Once seeded, the entire different.......
The complex nature of myelination/remyelination processes and demyelinating events makes the development of predictive in vitro systems extremely challenging. The most widely used in vitro drug screening systems are mostly human cell lines or primary pure OL cultures, with increasing use of more complex co-cultures or organotypic systems15. Even if such systems are coupled with high content technologies, pure OL cultures remain the method of choice when developing screening platforms
Supported by MIUR National Technology Clustersproject IRMI (CTN01_00177_888744), and Regione Emilia-Romagna, Mat2Rep, POR-FESR 2014-2020.
Special thanks to IRET Foundation for hosting the experimental work.
....Name | Company | Catalog Number | Comments |
96-well plates - untreated | NUNC | 267313 | |
B27 supplement (100x) | GIBCO | 17504-044 | |
basic Fibroblast Growth Factor (bFGF) | GIBCO | PHG0024 | |
BSA | Sigma-Aldrich | A2153 | |
Ciliary Neurotropic Factor (CNTF) | GIBCO | PHC7015 | |
DMEM w/o glucose | GIBCO | A14430-01 | |
DMEM/F12 GlutaMAX | GIBCO | 31331-028 | |
DNase | Sigma-Aldrich | D5025-150KU | |
EBSS | GIBCO | 14155-048 | |
Epidermal Growth Factor (EGF) | GIBCO | PHG6045 | |
HBSS | GIBCO | 14170-088 | |
HEPES | GIBCO | 15630-056 | |
Hyaluronidase | Sigma-Aldrich | H3884 | |
IFN-γ | Origene | TP721239 | |
IL-17A | Origene | TP723199 | |
IL-1β | Origene | TP723210 | |
IL-6 | Origene | TP723240 | |
laminin | GIBCO | 23017-051 | |
N-acetyl-L-cysteine | Sigma-Aldrich | A9165 | |
N2 supplement (50x) | GIBCO | 17502-048 | |
Non-enzymatic dissociation buffer | GIBCO | 13150-016 | |
PBS | GIBCO | 70011-036 | |
Penicillin / Streptomycin | Sigma-Aldrich | P4333 | |
Platelet Derived Growth Factor (PDGF-AA) | GIBCO | PHG0035 | |
poly-D,L-ornitine | Sigma-Aldrich | P4957 | |
TGF-β1 | Origene | TP720760 | |
TNF-α | Origene | TP723451 | |
Triiodothyronine | Sigma-Aldrich | T2752-1G | |
Trypsin | Sigma-Aldrich | T1426 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved