Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Neuroscience

High-Content Screening Differentiation and Maturation Analysis of Fetal and Adult Neural Stem Cell-Derived Oligodendrocyte Precursor Cell Cultures

Published: March 10th, 2021

DOI:

10.3791/61988

Abstract

The main hurdle in developing drug screening techniques for assessing the efficacy of therapeutic strategies in complex diseases is striking a balance between in vitro simplification and recreating the complex in vivo environment, along with the main aim, shared by all screening strategies, of obtaining robust and reliable data, highly predictive for in vivo translation.

In the field of demyelinating diseases, the majority of drug screening strategies are based on immortalized cell lines or pure cultures of isolated primary oligodendrocyte precursor cells (OPCs) from newborn animals, leading to strong biases due to the lack of age-related differences and of any real pathological condition or complexity.

Here we show the setup of an in vitro system aimed at modeling the physiological differentiation/maturation of neural stem cell (NSC)-derived OPCs, easily manipulated to mimic pathological conditions typical of demyelinating diseases. Moreover, the method includes isolation from fetal and adult brains, giving a system which dynamically differentiates from OPCs to mature oligodendrocytes (OLs) in a spontaneous co-culture which also includes astrocytes. This model physiologically resembles the thyroid hormone-mediated myelination and myelin repair process, allowing the addition of pathological interferents which model disease mechanisms. We show how to mimic the two main components of demyelinating diseases (i.e., hypoxia/ischemia and inflammation), recreating their effect on developmental myelination and adult myelin repair and taking all the cell components of the system into account throughout, while focusing on differentiating OPCs.

This spontaneous mixed model, coupled with cell-based high-content screening technologies, allows the development of a robust and reliable drug screening system for therapeutic strategies aimed at combating the pathological processes involved in demyelination and at inducing remyelination.

Explore More Videos

Keywords Neural Stem Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved