A subscription to JoVE is required to view this content. Sign in or start your free trial.
This method describes the use of a novel high-throughput methodology, based on droplet chemical reactions, for the rapid and economical optimization of radiopharmaceuticals using nanomole amounts of reagents.
Current automated radiosynthesizers are designed to produce large clinical batches of radiopharmaceuticals. They are not well suited for reaction optimization or novel radiopharmaceutical development since each data point involves significant reagent consumption, and contamination of the apparatus requires time for radioactive decay before the next use. To address these limitations, a platform for performing arrays of miniature droplet-based reactions in parallel, each confined within a surface-tension trap on a patterned polytetrafluoroethylene-coated silicon "chip", was developed. These chips enable rapid and convenient studies of reaction parameters including reagent concentrations, reaction solvent, reaction temperature and time. This platform permits the completion of hundreds of reactions in a few days with minimal reagent consumption, instead of taking months using a conventional radiosynthesizer.
Positron-emission tomography (PET) radiopharmaceuticals are widely used as research tools to monitor specific in vivo biochemical processes and study diseases, and for the development of new drugs and therapies. Moreover, PET is a critical tool for diagnosing or staging disease and monitoring a patient's response to therapy1,2,3. Due to the short half-life of PET radioisotopes (e.g., 110 min for fluorine-18-labeled radiopharmaceuticals) and radiation hazard, these compounds are prepared using specialized automated systems operating behind radiation shielding and must be p....
CAUTION: This protocol involves the handling of radioactive materials. Experiments should not be undertaken without the necessary training and personal protective equipment and approval from the radiation safety office at your organization. Experiments should be performed behind radiation shielding, preferably in a ventilated hot cell
1. Fabrication of multi-reaction chips
NOTE: Batches of multi-reaction microdroplet chips are fabricated from 4" silicon wafers usi.......
A representative experiment was performed to illustrate this method. Using 16 reactions, optimization studies of the radiopharmaceutical [18F]fallypride were performed by varying precursor concentration (77, 39, 19, 9.6, 4.8, 2.4, 1.2, and 0.6 mM) in thexyl alcohol:MeCN (1:1, v/v) as the reaction solvent. Reactions were performed at 110 °C for 7 min. Collection efficiency, sample composition (i.e., proportions of [18F]fallypride product, unreacted [18.......
Due to limitations of conventional radiochemistry systems that allow only one or a small number of reactions per day and consume a significant quantity of reagents per data point, only a tiny portion of the overall reaction parameter space can be explored in practice, and many times results are reported with no repeats (n=1). Compared to conventional systems, this multi-reaction droplet radiosynthesis platform makes it practical to accomplish more comprehensive and rigorous studies of radiosynthesis conditions while cons.......
We thank the UCLA Biomedical Cyclotron Facility and Dr. Roger Slavik and Dr. Giuseppe Carlucci for generously providing [18F]fluoride for these studies and the UCLA NanoLab for support with equipment for chip fabrication.
....Name | Company | Catalog Number | Comments |
2,3-dimethyl-2-butanol (thexyl alcohol) | Sigma-Aldrich | 594-60-5 | 98% |
Acetone | KMG Chemicals | Cleanroom LP grade | |
Ammonium formate (NH4HCO2) | Sigma-Aldrich | 540-69-2 | 97% |
Anhydrous acetonitrile (MeCN) | Sigma-Aldrich | 75-05-8 | 99.80% |
Ceramic heater | Watlow | Utramic CER-1-01-0093 | 25 mm x 25 mm |
Cerenkov imaging chamber | Custom built | Other instruments can be used for TLC plate readout including: small animal in vivo optical imaging system, 2D radio-TLC scanner, 1D radio-TLC scanner | |
DI water | Sigma-Aldrich | 7732-18-5 | |
Disposable transfer pipets, 3 mL | Falcon | 13-680-50 | |
Dose calibrator | Capintec, Inc. | CRC-25 PET | |
Fallypride | ABX Advanced Biochemical Compounds | 1560.0010.000 | Fallypride reference standard, >95% |
[18F]fluoride in [18O]H2O | UCLA Ahmanson Biomedical Cyclotron Facility | Due to short half-life this must be obtained from local radiochemistry lab or commercial radiopharmacy | |
Glass cover plates (76.2 mm x 50.8 mm x 1 mm thick) | C&A Scientific | 6101 | |
Headway spin coater | Headway Research, Inc. | PWM50-PS-R790 Sipinner system | PWM50-control box, PS-motor, R790-bowl |
High temperature oven | Carbolite | HTCR 6 28 | |
Hot plate | Thermo Scientific | Super-Nuova HP133425 | |
Isopropanol (IPA) | KMG Chemicals | Cleanroom LP grade | |
Mask aligner | Karl Suss | MA/BA6 | |
Methanol (MeOH) | Sigma-Aldrich | 67-56-1 | ≥99.9% |
Microcentrifuge tube | Eppendorf | 0030 123.301 | 500 µL, colorless, polypropylene |
Micropipette (0.5-10 µL) | Labnet | BioPette P3940-10 | |
Micropipette (100-1000 µL) | Labnet | BioPette P3940-1000 | |
Micropipette (10-100 µL) | Labnet | BioPette P3940-100 | |
Micropipette tips (0.1-10 µL) | USA Scientific Inc Tips | 11113810 | |
Micropipette tips (2-200 µL) | BrandTech | 13-889-143 | |
Micropipette tips (50-1000 µL) | BrandTech | 13-889-145 | |
Photoresist developer solution | MicroChem | MEGAPOSIT MF-26A | |
Positive photoresist | MicroChem | MEGAPOSIT 220-7.0 | |
Reactive-ion etcher (RIE) | Oxford Instruments | Plasma Lab 80 Plus | |
Silicon wafer cutter | Euro Tool | CSCB-431.00 | |
Silicon wafer; 4" diameter | Silicon Valley Microelectronics Inc. | 0017227-048 | P type, boron doped, thickness 525 ± 25 µm |
Teflon AF 2400 | Chemours | D14896765 | 1% solids |
Tetrabutylammonium bicarbonate (TBAHCO3) | ABX Advanced Biochemical Compounds | 808 | Aqueous solution stabilized with ethanol, 0.075 M |
Themal conducting paste | OMEGA | OT-201-2 | |
TLC plates | Merck KGaA | 1.05554.0001 | Silica gel 60 F254, 50 mm x 60 mm, aluminum back |
Tosyl-fallypride | ABX Advanced Biochemical Compounds | 1550.004.000 | Fallypride precursor, >90% |
Trimethylamine (TEA) | Sigma-Aldrich | 75-50-3 | ≥ 99% |
Tweezers | Cole-Parmer | UX-07387-08 | Stainless steel, fine tip |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved