A subscription to JoVE is required to view this content. Sign in or start your free trial.
The genome is organized in the nuclear space into different structures that can be revealed through chromosome conformation capture technologies. The in-nucleus Hi-C method provides a genome-wide collection of chromatin interactions in Drosophila cell lines, which generates contact maps that can be explored at megabase resolution at restriction fragment level.
The genome is organized into topologically associating domains (TADs) delimited by boundaries that isolate interactions between domains. In Drosophila, the mechanisms underlying TAD formation and boundaries are still under investigation. The application of the in-nucleus Hi-C method described here helped to dissect the function of architectural protein (AP)-binding sites at TAD boundaries isolating the Notch gene. Genetic modification of domain boundaries that cause loss of APs results in TAD fusion, transcriptional defects, and long-range topological alterations. These results provided evidence demonstrating the contribution of genetic elements to domain boundary formation and gene expression control in Drosophila. Here, the in-nucleus Hi-C method has been described in detail, which provides important checkpoints to assess the quality of the experiment along with the protocol. Also shown are the required numbers of sequencing reads and valid Hi-C pairs to analyze genomic interactions at different genomic scales. CRISPR/Cas9-mediated genetic editing of regulatory elements and high-resolution profiling of genomic interactions using this in-nucleus Hi-C protocol could be a powerful combination for the investigation of the structural function of genetic elements.
In eukaryotes, the genome is partitioned into chromosomes that occupy specific territories in the nuclear space during interphase1. The chromatin forming the chromosomes can be divided into two main states: one of accessible chromatin that is transcriptionally permissive, and the other of compact chromatin that is transcriptionally repressive. These chromatin states segregate and rarely mix in the nuclear space, forming two distinct compartments in the nucleus2. At the sub-megabase scale, boundaries separate domains of high-frequency chromatin interactions, called TADs, that mark chromosomal organization
1. Fixation
Described below are the results of a successful Hi-C protocol (see a summary of the Hi-C protocol workflow in Figure 1A). There are several quality control checkpoints during the in-nucleus Hi-C experiment. Sample aliquots were collected before (UD) and after (D) the chromatin restriction step as well as after ligation (L). Crosslinks were reversed, and DNA was purified and run on an agarose gel. A smear of 200-1000 bp was observed when restriction with Mbo I was successful (
The in-nucleus Hi-C method presented here has allowed detailed exploration of Drosophila genome topology at high resolution, providing a view of genomic interactions at different genomic scales, from chromatin loops between regulatory elements such as promoters and enhancers to TADs and large compartment identification25. The same technology has also been efficiently applied to mammalian tissues with some modifications33. For example, when processing a tissue instead of a s.......
This work was supported by UNAM Technology Innovation and Research Support Program (PAPIIT) grant number IN207319 and the Science and Technology National Council (CONACyT-FORDECyT) grant number 303068. A.E.-L. is a master's student supported by the Science and Technology National Council (CONACyT) CVU number 968128.
....Name | Company | Catalog Number | Comments |
16% (vol/vol) paraformaldehyde solution | Agar Scientific | R1026 | |
Biotin-14-dATP | Invitrogen | CA1524-016 | |
ClaI enzyme | NEB | R0197S | |
COVARIS Ultrasonicator | Covaris | LE220-M220 | |
Cut Smart | NEB | B72002S | |
Dulbecco's Modified Eagle Medium (DMEM) 1x | Life Technologies | 41965-039 | |
Dynabeads MyOne Streptabidin C1 | Invitrogen | 65002 | |
Fetal bovine serum (FBS) sterile filtered | Sigma | F9665 | |
Klenow Dna PolI large fragment | NEB | M0210L | |
Klenow exo(-) | NEB | M0210S | |
Ligation Buffer | NEB | B020S | |
MboI enzyme | NEB | R0147M | |
NP40-Igepal | SIGMA | CA-420 | Non-ionic surfactant for addition in lysis buffer |
PE adapter 1.0 | Illumina | 5'-P-GATCGGAAGAGCGGTTCAGCAG GAATGCCGAG-3' | |
PE adapter 2.0 | Illumina | 5'-ACACTCTTTCCCTACACGACGCT CTTCCGATCT-3' | |
PE PCR primer 1.0 | Illumina | 5'-AATGATACGGCGACCACCGAGAT CTACACTCTTTCCCTACACGACG CTCTTCCGATCT-3' | |
PE PCR primer 2.0 | Illumina | 5'-CAAGCAGAAGACGGCATACGAG ATCGGTCTCGGCATTCCTGCTGA ACCGCTCTTCCGATCT-3' | |
Phenol: Chloroform:Isoamyl Alcohol 25:24:1 | SIGMA | P2069 | |
Primer 1 (known interaction, Figure 2A) | Sigma | 5'-TCGCGGTAATTTTGCGTTTGA-3' | |
Primer 2 (known interactions, Figure 2A) | Sigma | 5'-CCTCCCTGCCAAAACGTTTT-3' | |
Protease inhibitor cocktail tablet | Roche | 4693132001 | |
Proteinase K | Roche | 3115879001 | |
Qubit | ThermoFisher | Q33327 | |
RNAse | Roche | 10109142001 | |
SPRI Beads | Beckman | B23318 | |
T4 DNA ligase | Invitrogen | 15224-025 | |
T4 DNA polymerase | NEB | M0203S | |
T4 polynucleotide kinase (PNK) | NEB | M0201L | |
TaqPhusion | NEB | M0530S | DNA polymerase |
Triton X-100 | Non-ionic surfactant for quenching of SDS |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved