A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol details an investigation of the early interactions between virally infected nasal epithelial cells and innate cell activation. Individual subsets of immune cells can be distinguished based on their activation in response to viral infections. They can then be further investigated to determine their effects on early antiviral responses.
The early interactions between the nasal epithelial layer and the innate immune cells during viral infections remains an under-explored area. The significance of innate immunity signaling in viral infections has increased substantially as patients with respiratory infections who exhibit high innate T cell activation show a better disease outcome. Hence, dissecting these early innate immune interactions allows the elucidation of the processes that govern them and may facilitate the development of potential therapeutic targets and strategies for dampening or even preventing early progression of viral infections. This protocol details a versatile model that can be used to study early crosstalk, interactions, and activation of innate immune cells from factors secreted by virally infected airway epithelial cells. Using an H3N2 influenza virus (A/Aichi/2/1968) as the representative virus model, innate cell activation of co-cultured peripheral blood mononuclear cells (PBMCs) has been analyzed using flow cytometry to investigate the subsets of cells that are activated by the soluble factors released from the epithelium in response to the viral infection. The results demonstrate the gating strategy for differentiating the subsets of cells and reveal the clear differences between the activated populations of PBMCs and their crosstalk with the control and infected epithelium. The activated subsets can then be further analyzed to determine their functions as well as molecular changes specific to the cells. Findings from such a crosstalk investigation may uncover factors that are important for the activation of vital innate cell populations, which are beneficial in controlling and suppressing the progression of viral infection. Furthermore, these factors can be universally applied to different viral diseases, especially to newly emerging viruses, to dampen the impact of such viruses when they first circulate in naïve human populations.
Respiratory viruses are perhaps amongst the most widespread pathogens causing severe healthcare and economic burden. From the periodic global outbreaks of emerging epidemic strains (e.g., H1N1, H5N1, H3N2, MERS, COVID-19) to the seasonal strains of influenza every year, viruses are a constant threat to public health. Although vaccines form the main bulk of the response to these global public health challenges, it is sobering to note that these countermeasures are merely responsive1,2. Furthermore, a delay between the emergence of a new infectious strain and the successful development of its vaccine is inevitab....
NOTE: Refer to Table 1 for recipes of media used in this protocol.
NOTE: hNECS grown on 12-well transwell have been found to grow into more optimal thickness for soluble factors to reach the basal chamber readily when infected with Influenza virus. Hence use of 12-well sized transwell for co-culture is recommended.
1. Establishment of the 3T3 feeder layer
Although conventional T cells form the main repertoire of adaptive immune response against viral infection to facilitate viral clearance, the innate T cell population works across a broader spectrum to suppress the viral load for effective clearance at a later stage. Therefore, this protocol specifically creates a robust condition to study innate T cells, their activation, and their functional population following influenza infection, without needing epithelial and immune cell samples fro.......
Innate immune responses against viruses are an under-investigated field of study in antiviral management. The airway epithelial cells and innate immune cells work in concert to suppress viral replication during an infection, besides serving as a determinant of overactive adaptive response if the viral load is not kept in check12,13,17. However, the development of a relevant human model for the study of epithelial-innate immune c.......
We would like to thank the research staff in NUS Department of Otolaryngology and Department of Microbiology and Immunology for their help with the hNEC culture- and viral-culture-related work. We would also like to thank the surgeons and surgical team in National University Hospital, Department of Otolaryngology, for their assistance in providing the cell and blood samples required for the study.
This study was funded by National Medical Research Council, Singapore No. NMRC/CIRG/1458/2016 (to De Yun Wang) and MOH-OFYIRG19may-0007 (to Kai Sen Tan). Kai Sen Tan is a recipient of fellowship support from European Allergy and Clinical Immunology (EAACI) Research Fel....
Name | Company | Catalog Number | Comments |
0.5% Trypsin-EDTA | Gibco | 15400-054 | |
0.5 M Ethylenediaminetetraacetic acid (EDTA), pH 8.0, RNase-free | Thermofisher | AM9260G | 0.5M EDTA |
1.5 mL SafeLock Tubes | Eppendorf | 0030120086 | 1.5mL Centrifuge Tube |
10 mL K3EDTA Vacutainer Tubes | BD | 366643 | 10mL Blood Collection Tubes |
10x dPBS | Gibco | 14200-075 | |
10x PBS | Vivantis | PC0711 | |
12-well Plate | Corning | 3513 | |
12-well Transwell Insert | Corning | 3460 | membrane insert |
1x FACS Lysing Solution | BD | 349202 | |
2.0 mL SafeLock Tubes | Eppendorf | 0030120094 | 2 mL centrifuge tube |
24-well Plate | Corning | 3524 | |
24-well Transwell Insert | Corning | 3470 | |
3% Acetic Acid with Methylene Blue | STEMCELL Technologies | 07060 | |
3,3',5-triiodo-l-thyronine | Sigma | T-074 | |
37% Formaldehyde Solution w 15% Methanol as Stabilizer in H2O | Sigma | 533998 | |
5810R Centrifuge | Eppendorf | 5811000320 | |
5 mL polypropylene tubes (flow tubes) | BD | 352058 | |
70 µm Cell Strainer | Corning | 431751 | |
A-4-62 Rotor | Eppendorf | 5810709008 | |
Accutase | Gibco | A1110501 | Cell Dissociation Reagent |
Antibiotic-Antimycotic | Gibco | 15240-062 | |
Avicel CL-611 | FMC Biopolymer | NA | Liquid Overlay |
Bio-Plex Manager 6.2 Standard Software | Bio-Rad Laboratories, Inc | 171STND01 | Multiplex Manager Software |
Butterfly Needle 21 G | BD | 367287 | |
Cholera Toxin | Sigma | C8052 | |
Crystal Violet | Merck | C6158 | |
Cytofix/Cytoperm Solution | BD | 554722 | Fixation and Permeabilization Solution |
Dispase II | Sigma | D4693 | Neutral Protease |
DMEM/High Glucose | GE Healthcare Life Sciences | SH30243.01 | |
DMEM/Nutrient Mixture F-12 | Gibco-Invitrogen | 11320033 | |
dNTP Mix | Promega | U1515 | dNTP Mix |
EMEM (w L-Glutamine) | ATCC | 30-2003 | |
EVOM voltohmmeter device | WPI, Sarasota, FL, USA | 300523 | |
FACS Lysing Solution | BD | 349202 | 1x Lysing Solution |
Falcon tube 15 mL | CellStar | 188271 | 15 mL tube |
Falcon tube 50 mL | CellStar | 227261 | 50 mL Tube |
Fast Start Essential DNA Probes Master | Roche | 6402682001 | qPCR Master Mix |
Ficoll Paque Premium | Research Instruments | 17544203 | Density Gradient Media |
H3N2 (A/Aichi/2/1968) | ATCC | VR547 | |
H3N2 M1 Forward Primer Sequence | Sigma | 5'- ATGGTTCTGGCCAGCACTAC-3' | |
H3N2 M1 Reverse Primer Sequence | Sigma | 5'- ATCTGCACCCCCATTCGTTT-3' | |
H3N2 NS1 Forward Primer Sequence | Sigma | 5'- ACCCGTGTTGGAAAGCAGAT-3' | |
H3N2 NS1 Reverse Primer Sequence | Sigma | 5'- CCTCTTCGGTGAAAGCCCTT-3' | |
Heat Inactivated Fetal Bovine Serum | Gibco | 10500-064 | |
hNESPCs | Human Donors | NA | |
Human Epithelial Growth Factor | Gibco-Invitrogen | PHG0314 | |
Hydrocortisone | STEMCELL Techonologies | 7925 | Collected from nasal biopsies during septal deviation surgeries |
Insulin | Sigma | I3536 | |
Lightcycler 96 | Roche | 5815916001 | qPCR Instrument |
Live/DEAD Blue Cell Stain Kit *for UV Excitation | Thermofisher | L23105 | Viability Stain |
MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel II - Premixed 23 Plex | Merck Pte Ltd | HCP2MAG-62K-PX23 | Immunology Multiplex Assay |
Mitomycin C | Sigma | M4287 | |
M-MLV 5x Buffer | Promega | M1705 | RT-PCR 5x Buffer |
M-MLV Reverse Transcriptase | Promega | M1706 | Reverse Transcriptase |
N-2 supplement | Gibco-Invitrogen | 17502-048 | |
NIH/3T3 | ATCC | CRL1658 | |
Perm/Wash Buffer | BD | 554723 | Permeabilization Wash Buffer |
PneumaCult-ALI 10x Supplement | STEMCELL Techonologies | 5001 | |
PneumaCult-ALI Basal Medium | STEMCELL Techonologies | 5001 | |
PneumaCult-ALI Maintenance Supplement (100x) | STEMCELL Techonologies | 5001 | |
Random Primers | Promega | C1181 | Random Primers |
Recombinant Rnasin Rnase Inhibitor | Promega | N2511 | RNase Inhibitor |
RNA Lysis Buffer | Qiagen | Part of 52904 | |
RPMI 1640 (w L-Glutamine) | ATCC | 30-2001 | |
STX2 electrodes | WPI, Sarasota, FL, USA | STX2 | Electrode |
T25 Flask | Corning | 430639 | |
T75 Flask | Corning | 430641U | |
TPCK Trypsin | Sigma | T1426 | |
Trypan Blue | Hyclone | SV30084.01 | |
Viral RNA Extraction Kit | Qiagen | 52904 | Viral RNA Extraction Kit |
V-Shaped 96-well Plate | Corning | 3894 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved