JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Developmental Biology

Cell Dissociation from the Tongue Epithelium and Mesenchyme/Connective Tissue of Embryonic-Day 12.5 and 8-Week-Old Mice

Published: January 21st, 2021

DOI:

10.3791/62163

1Regenerative Bioscience Center; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia

We have developed a generalized protocol to dissociate a large quantity of high-quality single cells from the epithelium and mesenchyme/connective tissue of embryonic and adult mouse tongues.

Cell dissociation has been an essential procedure for studies at the individual-cell level and/or at a cell-population level (e.g., single cell RNA sequencing and primary cell culture). Yielding viable, healthy cells in large quantities is critical, and the optimal conditions to do so are tissue dependent. Cell populations in the tongue epithelium and underlying mesenchyme/connective tissue are heterogeneous and tissue structures vary in different regions and at different developmental stages. We have tested protocols for isolating cells from the mouse tongue epithelium and mesenchyme/connective tissue in the early developmental [embryonic day 12.5 (E12.5)] and young adult (8-week) stages. A clean separation between the epithelium and underlying mesenchyme/connective tissue was easy to accomplish. However, to further process and isolate cells, yielding viable healthy cells in large quantities, and careful selection of enzymatic digestion buffer, incubation time, and centrifugation speed and time are critical. Incubation of separated epithelium or underlying mesenchyme/connective tissue in 0.25% Trypsin-EDTA for 30 min at 37 °C, followed by centrifugation at 200 x g for 8 min resulted in a high yield of cells at a high viability rate (>90%) regardless of the mouse stages and tongue regions. Moreover, we found that both dissociated epithelial and mesenchymal/connective tissue cells from embryonic and adult tongues could survive in the cell culture-based medium for at least 3 h without a significant decrease of cell viability. The protocols will be useful for studies that require the preparation of isolated cells from mouse tongues at early developmental (E12.5) and young adult (8-week) stages requiring cell dissociation from different tissue compartments.

The mammalian tongue is a complex organ critical for taste, speaking, and food processing. It is comprised of multiple types of highly organized tissues compartmentalized by mesenchyme/connective tissue and covered by a stratified epithelial sheet containing taste papillae and taste buds. Cell populations in both tongue epithelium and mesenchyme/connective tissue are heterogeneous. To better understand the functions and distribution of a particular type of cells in the tongue, studies using dissociated cells are necessary. For example, single cell RNA sequencing is a powerful and high-throughput method for transcriptomic profiling in individual cells, which is designe....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Animal use (C57BL/6 mice throughout the study) was approved by the University of Georgia Institutional Animal Care and Use Committee and was in accordance with the National Institutes of Health Guidelines for care and use of animals for research.

1. Animal usage

NOTE: Mice were bred and maintained in the animal facility of the Animal and Dairy Science department at the University of Georgia at 22 °C under 12-h day/night cycles.

  1. Designate noon of the.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Separation of the tongue epithelium from the underlying mesenchyme/connective tissue
In the embryonic mouse tongue, a gap in the sub-epithelial space is visible after proper enzyme digestion. Epithelial sheets of some tongues are separated without mechanical force during the incubation.

In the adult mouse tongue, a successful enzyme injection is indicated by the swelling in the injected areas (Figure 1B2), which s.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To date, there has not been a detailed protocol available for cell dissociation from the tongue epithelium and underlying mesenchyme/connective tissue. This current cell dissociation protocol provides a reproducible procedure to generate a single cell suspension with a high cell viability (>90%) from mouse tongue tissues, including epithelial sheets and mesenchyme/connective tissues at both embryonic and postnatal stages even though isolated cells from E12.5 and adult mice are different in size. For example, isolated .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was supported by the National Institutes of Health, grant number R01DC012308 and R21DC018089 to HXL. We give thanks to Brett Marshall (University of Georgia, Athens, GA) and Egon Ranghini (10X GENOMICS, Pleasanton, CA) for technical assistance and consultation regarding the cell dissociation; to Francisca Gibson Burnley (University of Georgia, Athens, GA) for English editing.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
bovine serum albumin (BSA) Gold Biotechnology A-420-100
C57BL/6 mouse (C57BL/6J) The Jackson Laboratory 000664
collagenase (Collagenase A) Sigma-Aldrich 10103586001
culture dish (35 mm in diameter) Genesee Scientific 32-103G
culture dish (100 mm in diameter) Genesee Scientific 32-107G
dispase (Dispase II) Sigma-Aldrich 04942078001
dissecting scissors (Student Fine Scissors) Find Science Tool 91460-11
DMEM/F12 Gibco 11320033
fetal bovine serum (FBS) Hyclone C838U82
fine forceps (Dumount #3 Forceps) Find Science Tool 11293-00
hemocytometer Hausser Scientific 3520
inverted microscope with imaging system (EVOS XL Core Cell Imaging System) Life Technologies AMEX1000
low retention pipette tips METTLER TOLEDO 17014342
mini-scissors (Evo Spring Scissors) Fine Science Tool 15800-01
plastic warp VWR 46610-056
spatula (Moria Spoon) Fine Science Tool 10321-08
surgical forceps (Dumount #2 Laminectomy Forceps) Fine Science Tool 11223-20
Trypan blue Gibco 15250061
Tyrode’s solution Sigma-Aldrich T2145-10L made from Tyrode's salts
0.25% typsin-EDTA Gibco 25200056
0.1 M Phosphate-Buffered Saline (PBS) Hoefer 33946 made from 1 M PBS
0.22-μm syringe filter Genesee Scientific 25-243
70% ethanol Koptec 233919 made from 100% ethanol
1-mL syringe BD 8194938
5-mL low binding microcentrifuge tube Eppendorf 30122348
30-G needle BD 9193532
35-μm cell strainer Falcon 64750
70-μm cell strainer Falcon 64752

  1. Grada, A., Weinbrecht, K. Next-generation sequencing: methodology and application. The Journal of investigative dermatology. 133 (8), 11 (2013).
  2. Whitley, S. K., Horne, W. T., Kolls, J. K. Research techniques made simple: methodology and clinical applications of RNA sequencing. Journal of Investigative Dermatology. 136 (8), 77-82 (2016).
  3. Schaum, N., et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris: The Tabula Muris Consortium. Nature. 562 (7727), 367 (2018).
  4. Sukumaran, S. K., et al. Whole transcriptome profiling of taste bud cells. Scientific reports. 7 (1), 1-15 (2017).
  5. Ren, W., et al. Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation. Scientific Reports. 7 (1), 1-13 (2017).
  6. Ren, W., et al. Single Lgr5-or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proceedings of the National Academy of Sciences. 111 (46), 16401-16406 (2014).
  7. Venkatesan, N., Boggs, K., Liu, H. -. X. Taste bud labeling in whole tongue epithelial sheet in adult mice. Tissue Engineering Part C: Methods. 22 (4), 332-337 (2016).
  8. Nguyen-Ngoc, K. -. V., et al. . Tissue Morphogenesis. , 135-162 (2015).
  9. Okubo, T., Clark, C., Hogan, B. L. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells. 27 (2), 442-450 (2009).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved