A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Chicken embryos, as a classical developmental model, are used in our lab to assess developmental cardiotoxicities following exposure to various environmental contaminants. Exposure methods and morphological/functional assessment methods established are described in this manuscript.
Chicken embryos are a classical model in developmental studies. During the development of chicken embryos, the time window of heart development is well-defined, and it is relatively easy to achieve precise and timely exposure via multiple methods. Moreover, the process of heart development in chicken embryos is similar to mammals, also resulting in a four-chambered heart, making it a valuable alternative model in the assessment of developmental cardiotoxicities. In our lab, the chicken embryo model is routinely used in the assessment of developmental cardiotoxicities following exposure to various environmental pollutants, including per- and polyfluoroalkyl substances (PFAS), particulate matter (PMs), diesel exhaust (DE) and nano materials. The exposure time can be freely selected based on the need, from the beginning of development (embryonic day 0, ED0) all the way to the day prior to hatch. The major exposure methods include air-cell injection, direct microinjection, and air-cell inhalation (originally developed in our lab), and the currently available endpoints include cardiac function (electrocardiography), morphology (histological assessments) and molecular biological assessments (immunohistochemistry, qRT-PCR, western blotting, etc.). Of course, the chicken embryo model has its own limitations, such as limited availability of antibodies. Nevertheless, with more laboratories starting to utilize this model, it can be used to make significant contributions to the study of developmental cardiotoxicities.
The chicken embryo is a classic developmental model, which has been used for over two hundred years1. The chicken embryo model has various advantages compared to traditional models. First of all, as early as over 70 years ago, the normal development of the chicken embryo had been illustrated very clearly in the Hamburger-Hamilton staging guide2, in which a total of 46 stages during chicken embryo development were defined with precise time and morphological characteristics, facilitating detections of abnormal development. Additionally, the chicken embryo model has other features such as being relatively low-cost and redundant in quantity, relatively accurate exposure-dose controls, an independent, closed system within the shell and easy manipulation of the developing embryo, all of which guarantees its potential to be used as a powerful toxicological assessment model.
In cardiotoxicity, the chicken embryo features a four chambered heart, similar to mammalian hearts but with thicker walls, allowing easier morphological assessments. Additionally, the chicken embryo allows for developmental inhalation exposure, which is not possible in mammalian models: during the later stage of development, the chicken embryo will transition from internal respiration to external respiration (getting oxygen via the lung); the latter requires that the embryo penetrates the air cell membrane with the beak, and starts to breathe air3, making the air cell a mini-inhalation chamber. Utilizing this phenomenon, the toxicological effects of gas contaminants on the heart (and other organs) may be assessed without the need of dedicated inhalation chamber instruments.
In this manuscript, several exposure/endpoint assessment methods are described, all of which serve to make the chicken embryo a powerful tool in the assessment of development cardiotoxicity following exposure to environmental contaminants.
Access restricted. Please log in or start a trial to view this content.
All procedures described were approved by the Institutional Animal Care and Use Committee (IACUC) of Qingdao University. In our lab, the eggs were incubated in two incubators. Eggs were held upright in the incubator and randomly placed on the shelves. The incubation conditions for the eggs were as follows: incubation temperature started at 37.9 °C, and gradually decreased to 37.1 °C as incubation proceeded; the humidity started at 50% and gradually increased to 70%.
1. Exposure methods
NOTE: Exposure of environmental contaminants to chicken embryos may be achieved in several ways. In this section, three routinely used methods are described in detail.
2. Endpoint assessment methods
NOTE: Following exposure of contaminant-of-interest to the developing embryo, several toxicity parameters can be evaluated, including cardiotoxicity. In this section, two frequently used specific methods are described in detail.
Access restricted. Please log in or start a trial to view this content.
Exposure results
Air cell injection
Air cell injection can effectively expose developing chicken embryos to various agents, which may be subsequently detected in the collected samples (serum, tissue, etc.) of embryos/hatchling chickens. Here is an example, in which perfluorooctanoic acid (PFOA) was air-cell injected, and serum PFOA concentrations were then determined with Ultra-performance liquid chromatography-mass spectrometry. The serum concentrations corresponded with the injected doses, indicating the ef...
Access restricted. Please log in or start a trial to view this content.
The chicken embryo has been a classical model in developmental studies for 200 years1. Our methods presented in this manuscript have been used in the assessment of several environmental contaminants, including perfluorooctanoic acid, particulate matter, and diesel exhaust with success5, 7,8,9,10,11
Access restricted. Please log in or start a trial to view this content.
The authors declare no conflict of interest.
This work was supported by National Natural Science Foundation of China (Grant No. 91643203, 91543208, 81502835).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
4% phosphate buffered formaldehydefixative | Biosharp, Hefei, China | REF: BL539A | |
75% ethanol | Guoyao,Shanghai,China | CAS:64-17-5 | |
Biosignaling monitor BL-420E+ | Taimeng, Chengdu, China | BL-420E+ | |
Candling lamp | Zhenwei, Dezhou, China | WZ-001 | |
Disposable syringe | Zhiyu, Jiangsu, China | ||
Egg incubator | Keyu,Dezhou, China | KFX | |
Electrical balance | OHAUS, Shanghai, China | AR 224CN | |
Electro-thermal incubator | Shenxian, Shanghai, China | DHP-9022 | |
Ethanol absolute | Guoyao,Shanghai,China | CAS:64-17-5 | |
Fertile chicken egg | Jianuo, Jining, China | ||
Hematoxylin and Eosin Staining Kit | Beyotime, Bejing, China | C0105 | |
Histology paraffin | Aladdin, Shanghai, China | P100928-500g | Melt point 52~54°C |
Histology paraffin | Aladdin, Shanghai, China | P100936-500g | Melt point 62~64°C |
IV catheter | KDL, Zhejiang, China | The catheters have to be soft, plastic ones. | |
Lentivirus | Genechem, Shanghai, China | The lentivirus were individually designed/synthesized by Genechem. | |
Masson's trichrome staining kit | Solarbio, Beijing, China | G1340 | |
Metal probe | Jinuotai, Beijing, China | ||
Microinjector (5 uL) | Anting,Shanghai, China | ||
Microscope | CAIKON, Shanghai, China | XSP-500 | |
Microtome | Leica, Germany | HistoCore BIOCUT | |
Microtome blade | Leica,Germany | Leica 819 | |
Pentobarbitual sodium | Yitai Technology Co. Ltd., Wuhan, China | CAS: 57-33-0 | |
Pipetter(10ul) | Sartorius, Germany | ||
Povidone iodide | Longyuquan, Taian, China | ||
Scissor | Anqisheng,Suzhou, China | ||
Sterile saline | Kelun,Chengdu, China | ||
Sunflower oil | Mighty Jiage, Jiangsu, China | Any commerical sunflower oil for human consumption should work | |
Tape | M&G, Shanghai, China | ||
Tedlar PVF Bag (5L) | Delin, Dalian, China | ||
Vortex mixer | SCILOGEX, Rocky Hill, CT, US | MX-F | |
Xylene | Guoyao,Shanghai,China | CAS:1330-20-7 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved