JoVE Logo

Sign In

Abstract

Biochemistry

Workflow and Tools for Crystallographic Fragment Screening at the Helmholtz-Zentrum Berlin

Published: March 3rd, 2021

DOI:

10.3791/62208

1Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 2Structural Biochemistry Group, Institute for Chemistry and Biochemistry, Freie Universität Berlin, 3BioMAX, MAX IV Laboratory, 4Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, 5Department Sample Environment, Helmholtz-Zentrum Berlin

Abstract

Fragment screening is a technique that helps to identify promising starting points for ligand design. Given that crystals of the target protein are available and display reproducibly high-resolution X-ray diffraction properties, crystallography is among the most preferred methods for fragment screening because of its sensitivity. Additionally, it is the only method providing detailed 3D information of the binding mode of the fragment, which is vital for subsequent rational compound evolution. The routine use of the method depends on the availability of suitable fragment libraries, dedicated means to handle large numbers of samples, state-of-the-art synchrotron beamlines for fast diffraction measurements and largely automated solutions for the analysis of the results.

Here, the complete practical workflow and the included tools on how to conduct crystallographic fragment screening (CFS) at the Helmholtz-Zentrum Berlin (HZB) are presented. Preceding this workflow, crystal soaking conditions as well as data collection strategies are optimized for reproducible crystallographic experiments. Then, typically in a one to two-day procedure, a 96-membered CFS-focused library provided as dried ready-to-use plates is employed to soak 192 crystals, which are then flash-cooled individually. The final diffraction experiments can be performed within one day at the robot-mounting supported beamlines BL14.1 and BL14.2 at the BESSY  II electron storage ring operated by the HZB in Berlin-Adlershof (Germany). Processing of the crystallographic data, refinement of the protein structures, and hit identification is fast and largely automated using specialized software pipelines on dedicated servers, requiring little user input.

Using the CFS workflow at the HZB enables routine screening experiments. It increases the chances for successful identification of fragment hits as starting points to develop more potent binders, useful for pharmacological or biochemical applications.

Explore More Videos

Crystallographic Fragment Screening

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved