A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol describes the generation of integration free iPSCs from fetal tissue fibroblasts through delivery of episomal plasmids by nucleofection followed by description of methods used for iPSC characterization and neuronal differentiation.
Chromosomal aneuploidies cause severe congenital malformations including central nervous system malformations and fetal death. Prenatal genetic screening is purely diagnostic and does not elucidate disease mechanism. Although cells from aneuploid fetuses are valuable biological material bearing the chromosomal aneuploidy, these cells are short lived, limiting their use for downstream research experiments. Generation of induced pluripotent stem cell (iPSC) models is an effective method of cell preparation for perpetual conservation of aneuploid traits. They are self-renewing and differentiate into specialized cells reminiscent of embryonic development. Thus, iPSCs serve as excellent tools to study early developmental events. Turner syndrome (TS) is a rare condition associated with a completely or partially missing X chromosome. The syndrome is characterized by infertility, short stature, endocrine, metabolic, autoimmune and cardiovascular disorders and neurocognitive defects. The following protocol describes isolation and culturing of fibroblasts from TS (45XO) fetal tissue, generation of integration free TSiPSCs through delivery of episomal reprogramming plasmids by nucleofection followed by characterization. The reprogramming TSiPSCs were initially screened by live cell alkaline phosphatase staining followed by extensive probing for pluripotency biomarkers. Selected colonies were mechanically dissected, passaged several times and stable self-renewing cells were used for further experiments. The cells expressed pluripotency transcription factors OCT4, NANOG, SOX2, cell surface markers SSEA 4 and TRA1-81 typical of pluripotent stem cells. The original 45XO karyotype was retained post reprogramming. The TSiPSCs were able to form embryoid bodies and differentiate into cells of endoderm, mesoderm and ectoderm expressing lineage specific biomarkers ((SRY BOX17), (MYOSIN VENTRICULAR HEAVY CHAINα/β), (βIII TUBULIN)). The exogenous episomal plasmids were lost spontaneously and not detected after passage 15 in cells. These TSiPSCs are a valuable cellular resource for modelling defective molecular and cellular neurodevelopment causing neurocognitive deficits associated with Turner syndrome.
Aneuploidies lead to birth defects/congenital malformations and pregnancy loss in humans. ~50%-70% of specimens from pregnancy losses show cytogenetic abnormalities. Aneuploid embryos lost early in pregnancy cannot be easily obtained for experimental analysis raising the need to develop other models closely representing human embryogenesis. Induced pluripotent stem cells (iPSCs) derived from cells diagnosed with genetic disorders have been used to model the representative genetic irregularities and their consequence on fetal development1,2,3,4
FCV were obtained from Manipal Hospital, Bengaluru, under Ethics Committee of Manipal Hospitals approval.
NOTE: See Table 1 for composition of all buffers and solutions.
1. Isolation of fibroblasts from fetal chorionic villi (FCV)
Generation of integration-free iPSCs from a spontaneously aborted fetus with 45XO karyotype
We isolated fibroblasts from FCV with a Turner syndrome (TS) specific 45XO karyotype and nucleofected them with episomal reprogramming plasmids to generate TSiPSCs which can be used for downstream modelling of the syndrome, specifically the associated neurological deficits (Figure 1a&b). We used nonintegrating episomal vectors and nucleofection for the trans.......
Generation of stable cellular models of cytogenetically abnormal fetal tissue is necessary for perpetuating defective phenotype. The iPSC route is the most effective method of cell preparation for perpetual conservation of defective properties20.
Pluripotent stem cells (PSC) display properties of self-renewal and differentiation into specialized cells reminiscent of early cleavage embryos21. Hence, PSCs can serve as excellent models to study earl.......
Financial support for the above research was provided by Manipal Academy of Higher Education. Characterization of the line was conducted partially in the laboratory of M. M. Panicker at NCBS. We thank Anand Diagnostic Laboratory for assistance with karyotyping.
....Name | Company | Catalog Number | Comments |
0.15% trypsin | Thermo Fisher Scientific | 27250018 | G Banding |
2-mercaptoethanol | Thermo Fisher Scientific | 21985023 | Pluripotency and Embryoid body medium |
4', 6 diamidino-2-phenylindole | Sigma Aldrich | D8417 | Immunocytochemistry |
Activin A | Sigma Aldrich | SRP3003 | Differentiation assays |
Alkaline Phosphatase Live Stain | Thermo Fisher Scientific | A14353 | AP staining |
AMAXA Nucleofector II | Lonza | - | Nucleofection |
AmnioMAX II complete media | Thermo Fisher Scientific, Gibco | 11269016 | Medium specific for foetal chorionic villi cell cultures |
Ampicillin | HiMedia | TC021 | Plasmid purification |
Anti Mouse IgG (H+L) Alexa Fluor 488 | Invitrogen | A11059 | Immunocytochemistry |
Anti Rabbit IgG (H+L) Alexa Fluor 488 | Invitrogen | A11034 | Immunocytochemistry |
Anti Rabbit IgG (H+L) Alexa Fluor 546 | Invitrogen | A11035 | Immunocytochemistry |
Antibiotic-Antimycotic | Thermo Fisher Scientific, Gibco | 15240096 | Contamination control |
Anti-E-Cadherin | BD Biosciences | 610181 | Immunocytochemistry |
Anti-Nanog | BD Biosciences | 560109 | Immunocytochemistry |
Anti-OCT3/4 | BD Biosciences | 611202 | Immunocytochemistry |
Anti-SOX17 | BD Biosciences | 561590 | Immunocytochemistry |
Anti-SOX2 | BD Biosciences | 561469 | Immunocytochemistry |
Anti-SSEA4 | BD Biosciences | 560073 | Immunocytochemistry |
Anti-TRA 1-81 | Millipore | MAB4381 | Immunocytochemistry |
basic Fibroblast Growth Factor[FGF2] | Sigma Aldrich | F0291 | Pluripotency medium |
Bone Morphogenetic Factor 4 | Sigma Aldrich | SRP3016 | Differentiation assays |
Bovine Serum Albumin | Sigma Aldrich | A3059 | Blocking |
Collagen Human Type IV | BD Biosciences | 354245 | Differentiation assays |
Collagenase blend | Sigma Aldrich | C8051 | Digestion of foetal chorionic villi |
Dexamethasone | Sigma Aldrich | D4902 | Differentiation assays |
DMEM F12 | Thermo Fisher Scientific | 11320033 | Differentiation assays |
FastDigest EcoR1 | Thermo Scientific | FD0274 | Restriction digestion |
Fibronectin | Sigma Aldrich | F2518 | Differentiation assays |
Giemsa Stain | HiMedia | S011 | G Banding |
Glacial Acetic Acid | HiMedia | AS001 | Fixative for karyotyping |
Glucose | Sigma Aldrich | G7528 | Differentiation assays |
GlutaMAX | Thermo Fisher Scientific | 35050061 | Pluripotency and Embryoid body medium |
Heparin sodium | Sigma Aldrich | H3149 | Differentiation assays |
Insulin solution human | Sigma Aldrich | I9278 | Differentiation assays |
Insulin Transferrin Selenite | Sigma Aldrich | I1884 | Differentiation assays |
KAPA HiFi PCR kit | Kapa Biosystems | KR0368 | OriP, EBNA1 PCR |
KaryoMAX Colcemid | Thermo Fisher Scientific | 15210040 | Mitotic arrest for karyotyping |
KnockOut DMEM | Thermo Fisher Scientific | 10829018 | Pluripotency and Embryoid body medium |
KnockOut Serum Replacement | Thermo Fisher Scientific | 10828028 | Pluripotency and Embryoid body medium |
Luria Bertani agar | HiMedia | M1151F | Plasmid purification |
Matrigel | BD Biosciences | 356234 | Differentiation assays |
MEM Non-essential amino acids | Thermo Fisher Scientific | 11140035 | Pluripotency and Embryoid body medium |
Methanol | HiMedia | MB113 | Fixative for karyotyping |
Myosin ventricular heavy chain α/β | Millipore | MAB1552 | Immunocytochemistry |
NHDF Nucleofector Kit | Lonza | VAPD-1001 | Nucleofection |
Paraformaldehyde (PFA) | Sigma Aldrich | P6148 | Fixing cells |
pCXLE-hOCT3/ 4-shp53-F | Addgene | 27077 | Episomal reprogramming Plasmid |
pCXLE-hSK | Addgene | 27078 | Episomal reprogramming Plasmid |
pCXLE-hUL | Addgene | 27080 | Episomal reprogramming Plasmid |
Penicillin Streptomycin | Thermo Fisher Scientific, | 15070063 | Pluripotency and Embryoid body medium |
Phalloidin- Tetramethylrhodamine B isothiocyanate | Sigma Aldrich | P1951 | Immunocytochemistry |
Phosphate buffered saline | Sigma Aldrich | P4417 | 1 X PBS 1 tablet of PBS dissolved in 200mL of deionized water and sterilized by autoclaving Storage: Room temperature. PBST- 0.05% Tween 20 in 1X PBS. Storage: Room temperature. |
Plasmid purification Kit- Midi prep | QIAGEN | 12143 | Plasmid purification |
Potassium Chloride Solution | HiMedia | MB043 | Hypotonic solution for karyotyping |
QIAamp DNA Blood Kit | Qiagen | 51104 | Genomic DNA isolation |
RPMI 1640 | Thermo Fisher Scientific | 11875093 | Hepatocyte differentiation medium |
Sodium Citrate | HiMedia | RM255 | Hypotonic solution for karyotyping |
Triton X-100 | HiMedia | MB031 | Permeabilisation |
Trypsin-EDTA (0.05%) | Thermo Fisher Scientific, Gibco | 25300054 | Subculture of foetal chorionic villi fibroblasts |
Tween 20 | HiMedia | MB067 | Preparation of PBST |
β III tubulin | Sigma Aldrich | T8578 | Immunocytochemistry |
Y-27632 dihydrochloride | Sigma Aldrich | Y0503 | Differentiation assays |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved