JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Engineering

Measurement of the Hand Transmitted Vibration of the Human Hand Arm System During Operation of a Hand Tractor

Published: June 16th, 2021

DOI:

10.3791/62508

1School of Mechanical Engineering, Chongqing University of Technology, 2College of Mechanical and Electrical Engineering, Wenzhou University, 3Mechanical and Manufacturing Engineering, Miami University

Here, we present a standardized method for measurement of the hand transmitted vibration from handles of a single-axle tractor with special reference to changes in grip force and vibration frequency.

Operators of hand tractors are exposed to high levels of hand transmitted vibration (HTV). This vibration, which can be both irksome and hazardous to human health, is imparted to the operator via his or her hands and arms. However, a standardized method for measuring HTV of hand tractors has yet to be defined. The aim of the study was to present an experimental method for the investigation of the biodynamic response and vibration transmissibility of the hand-arm system during the operation of a hand tractor in a stationary mode. Measurements were performed with ten subjects using three grip forces and three handle vibration levels to examine the influences of the hand pressure and frequency on hand transmitted vibration (HTV). The results indicate that the tightness of grip on the handle influences the vibration response of the hand-arm system, especially at frequencies between 20 and 100 Hz. The transmission of lower frequencies in the hand-arm system was relatively unattenuated. In comparison, attenuation was found to be quite marked for higher frequencies during the operation of the hand tractor. The vibration transmissibility to different parts of the hand-arm system decreased with the increase of the distance from the vibration source. The proposed methodology contributes to the collection of consistent data for the evaluation of operator vibration exposure and the ergonomics development of hand tractors.

Hand tractors, also known as power tillers, are widely used in developing countries for the land preparation of small fields. The field operation of a hand tractor involves walking behind the machine and holding its handles to control its movement. The operators of hand tractors are exposed to high levels of vibration, which could be attributed to the small single cylinder engine and lack of suspension system of hand tractors1. The hand-arm vibration syndrome (HAVS)2 can be caused by long-period endurance from the vibration, named hand transmitted vibration (HTV), which generated by the hand tractor and received by the o....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures were approved by the Ethics Committee of Chongqing University of Technology and each subject provided written informed consent prior to participation in this study.

1. Hand tractor preparation

  1. Ensure the hand tractor is subjected to proper test conditions with a full fuel tank, without looseness of bolts, and without other mechanical defects that would result in abnormal vibration.
    NOTE: The specifications of the hand tractor used in this experiment are given .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The experiment was carried out in the laboratory (air temperature 22.0 °C ± 1.5 °C) on ten healthy subjects (Table 2) during the operation of a hand tractor in a stationary condition.

Following the protocol, vibration acceleration data were collected from the handle of the hand tractor, as well as the back of the hand, the wrist, the arm, and the shoulder of each subject. The spectrum of the vibration acceleration occurring at the handle (input to the hand) was .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol presented in this study was established based on HTV standards4,5,24, and was developed as the standard steps for the measurement of the HTV of the human hand-arm system during the operation of a hand tractor in a stationary condition. This condition is the most stable state of the hand tractor to help ensure the reliable measurement of the vibration actually transmitted to the hand and arm. The range of variables c.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Natural Science Foundation of Chongqing, China (cstc2019jcyj-msxmX0046), the project of Chongqing Education Commission of China (KJQN202001127), and the project of Banan District Science and Technology Commission, Chongqing, China (2020TJZ010). The authors would like to thank Prof. Yan Yang for providing the test site. We are also grateful to Dr. Jingshu Wang and Dr. Jinghua Ma for their guidance of using the vibration measurement instrumentation. Thanks are also due to the subjects for their wholehearted cooperation during the experiments.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Accelerometers PCB Piezotronics Inc. 352C33, 356A04 Used to measure vibration signals. Including 2 tri-axial accelerometers and 5 single-axis accelerometers.
CompactDAQ System National Instruments cRIO-9045,NI-9234 C Used for acceleration acquisition. The system consists of a chassis and 3 data acquisition cards.
Digital caliper Sanliang 160800635 Used to measure dimensions of the hand.
Digital goniometer Sanliang 802973 Used to measure hand and arm posture.
Laptop computer Lenovo Ideapad 500s To run the softwares.
Matlab MathWorks Inc. Version 2020a Used for data processing.
NI SignalExpress National Instruments Trial version 2015 Use to acquire, analyze and present acceleration data.
Tachometer Sanliang TM 680 Used to measure engine speed.
Thin-film pressure sensing system YourCee n/a Used to measure grip force. The system consists of 2 thin-film sensors, a STM32 singlechip and a LED display.

  1. Ahmadian, H., Hassan-Beygi, S. R., Ghobadian, B., Najafi, G. ANFIS modeling of vibration transmissibility of a power tiller to operator. Applied Acoustics. 138, 39-51 (2018).
  2. Heaver, C., Goonetilleke, K. S., Ferguson, H., Shiralkar, S. Hand-arm vibration syndrome: a common occupational hazard in industrialized countries. Journal of Hand Surgery. 36 (5), 354-363 (2011).
  3. Geethanjali, G., Sujatha, C. Study of Biomechanical Response of Human Hand-Arm to Random Vibrations of Steering Wheel of Tractor. Molecular & Cellular Biomechanics. 10 (4), 303-317 (2013).
  4. International Organization for Standardization. ISO 5349-1: Mechanical Vibration: Measurement and Evaluation of Human Exposure to Hand Transmitted Vibration Part 1: General requirements. International Organization for Standardization. , (2001).
  5. International Organization for Standardization. ISO5349-2: Mechanical vibration- Measurement and evaluation of human exposure to hand-transmitted vibration. Part 2: Practical guidance for measurement at the workplace. International Organization for Standardization. , (2001).
  6. Besa, A. J., Valero, F. J., Suñer, J. L., Carballeira, J. Characterisation of the mechanical impedance of the human hand-arm system: The influence of vibration direction, hand-arm posture and muscle tension. International Journal of Industrial Ergonomics. 37 (3), 225-231 (2007).
  7. Marcotte, P., Aldien, Y., Boileau, P. &. #. 2. 0. 1. ;., Rakheja, S., Boutin, J. Effect of handle size and hand-handle contact force on the biodynamic response of the hand-arm system under zh-axis vibration. Journal of Sound and Vibration. 283 (3-5), 1071-1091 (2005).
  8. Pan, D., et al. The relationships between hand coupling force and vibration biodynamic responses of the hand-arm system. Ergonomics. 61 (6), 818-830 (2018).
  9. Dong, R. G., Rakheja, S., Schopper, A. W., Han, B., Smutz, W. P. Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review. Critical Reviews In Biomedical Engineering. 29 (4), 393-439 (2001).
  10. Marchetti, E., et al. An investigation on the vibration transmissibility of the human elbow subjected to hand-transmitted vibration. International Journal of Industrial Ergonomics. 62, 82-89 (2017).
  11. McDowell, T. W., Welcome, D. E., Warren, C., Xu, X. S., Dong, R. G. Assessment of hand-transmitted vibration exposure from motorized forks used for beach-cleaning operations. Annals of Work Exposures and Health. 57 (1), 43-53 (2013).
  12. Tony, B. J. A. R., Alphin, M. S. Finite element analysis to assess the biomechanical behavior of a finger model gripping handles with different diameters. Biomedical Human Kinetics. 11 (1), 69-79 (2019).
  13. Tony, B. J. A. R., Alphin, M. S., Velmurugan, D. Influence of handle shape and size to reduce the hand-arm vibration discomfort. Work. 63 (3), 415-426 (2019).
  14. Dewangan, V. K. T. Characteristics of hand-transmitted vibration of a hand tractor used in three operational modes. International Journal of Industrial Ergonomics. 39 (1), 239-245 (2009).
  15. Kalra, M., Rakheja, S., Marcotte, P., Dewangan, K. N., Adewusi, S. Measurement of coupling forces at the power tool handle-hand interface. International Journal of Industrial Ergonomics. 50, 105-120 (2015).
  16. Gurram, R., Rakheja, S., Gouw, G. J. A study of hand grip pressure distribution and EMG of finger flexor muscles under dynamic loads. Ergonomics. 38 (4), 684-699 (1995).
  17. Tarabini, M., Saggin, B., Scaccabarozzi, D., Moschioni, G. Hand-arm mechanical impedance in presence of unknown vibration direction. International Journal of Industrial Ergonomics. 43 (1), 52-61 (2013).
  18. Aatola, S. Transmission of vibration to the wrist and comparison of frequency response function estimators. Journal of Sound and Vibration. 131 (3), 497-507 (1989).
  19. Kihlberg, S. Biodynamic response of the hand-arm system to vibration from an impact hammer and a grinder. International Journal of Industrial Ergonomics. 16 (1), 1-8 (1995).
  20. Gurram, R., Rakheja, S., Gouw, G. J. Vibration transmission characteristics of the human hand-arm and gloves. International Journal of Industrial Ergonomics. 13 (3), 217-234 (1994).
  21. Burström, A. S. L. Transmission of vibration energy to different parts of the human hand-arm system. Int Arch Occup Environ Health. 70 (3), 199-204 (1997).
  22. Hartung, E., Dupuis, H., Scheffer, M. Effects of grip and push forces on the acute response of the hand-arm system under vibrating conditions. International Archives of Occupational and Environmental Health. 64 (6), 463-467 (1993).
  23. Pope, M. H., Magnusson, M., Hansson, T. The upper extremity attenuates intermediate frequency vibrations. Journal of Biomechanics. 30 (2), 103-108 (1997).
  24. International Organization for Standardization. ISO 8041-1: Human response to vibration-Measuring instrumentation. International Organization for Standardization. , (2017).
  25. Ying, Y. B., Zhang, L. B., Xu, F., Dong, M. D. Vibratory characteristics and hand-transmitted vibration reduction of walking tractor. Transactions Of The ASAE. 41 (4), 917-922 (1998).
  26. Dewangan, K. N., Tewari, V. K. Characteristics of vibration transmission in the hand-arm system and subjective response during field operation of a hand tractor. Biosystems Engineering. 100 (4), 535-546 (2008).
  27. Xu, X. S., et al. Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head. International Journal of Industrial Ergonomics. 62, 1-12 (2017).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved