A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Cancer Research
Il sequenziamento dell'RNA (RNA-seq) è una delle tecnologie più utilizzate nella trascrittomica in quanto può rivelare la relazione tra l'alterazione genetica e processi biologici complessi e ha un grande valore nella diagnostica, nella prognostica e nella terapia dei tumori. L'analisi differenziale dei dati RNA-seq è fondamentale per identificare trascrizioni aberranti e limma, EdgeR e DESeq2 sono strumenti efficienti per l'analisi differenziale. Tuttavia, l'analisi differenziale RNA-seq richiede determinate abilità con il linguaggio R e la capacità di scegliere un metodo appropriato, che manca nel curriculum di educazione medica.
Qui forniamo il protocollo dettagliato per identificare i geni differenzialmente espressi (DEG) tra il colangiocarcinoma (CHOL) e i tessuti normali attraverso limma, DESeq2 e EdgeR, rispettivamente, e i risultati sono mostrati in grafici vulcanici e diagrammi di Venn. I tre protocolli di limma, DESeq2 e EdgeR sono simili ma hanno passaggi diversi tra i processi di analisi. Ad esempio, un modello lineare viene utilizzato per le statistiche in limma, mentre la distribuzione binomiale negativa viene utilizzata in edgeR e DESeq2. Inoltre, i dati normalizzati del conteggio RNA-seq sono necessari per EdgeR e limma, ma non sono necessari per DESeq2.
Qui forniamo un protocollo dettagliato per tre metodi di analisi differenziale: limma, EdgeR e DESeq2. I risultati dei tre metodi sono in parte sovrapposti. Tutti e tre i metodi hanno i loro vantaggi e la scelta del metodo dipende solo dai dati.
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved