Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a protocol for the rapid identification of proteins produced by genomically sequenced pathogenic bacteria using MALDI-TOF-TOF tandem mass spectrometry and top-down proteomic analysis with software developed in-house. Metastable protein ions fragment because of the aspartic acid effect and this specificity is exploited for protein identification.

Abstract

This protocol identifies the immunity proteins of the bactericidal enzymes: colicin E3 and bacteriocin, produced by a pathogenic Escherichia coli strain using antibiotic induction, and identified by MALDI-TOF-TOF tandem mass spectrometry and top-down proteomic analysis with software developed in-house. The immunity protein of colicin E3 (Im3) and the immunity protein of bacteriocin (Im-Bac) were identified from prominent b- and/or y-type fragment ions generated by the polypeptide backbone cleavage (PBC) on the C-terminal side of aspartic acid, glutamic acid, and asparagine residues by the aspartic acid effect fragmentation mechanism. The software rapidly scans in silico protein sequences derived from the whole genome sequencing of the bacterial strain. The software also iteratively removes amino acid residues of a protein sequence in the event that the mature protein sequence is truncated. A single protein sequence possessed mass and fragment ions consistent with those detected for each immunity protein. The candidate sequence was then manually inspected to confirm that all detected fragment ions could be assigned. The N-terminal methionine of Im3 was post-translationally removed, whereas Im-Bac had the complete sequence. In addition, we found that only two or three non-complementary fragment ions formed by PBC are necessary to identify the correct protein sequence. Finally, a promoter (SOS box) was identified upstream of the antibacterial and immunity genes in a plasmid genome of the bacterial strain.

Introduction

Analysis and identification of undigested proteins by mass spectrometry is referred to as the top-down proteomic analysis1,2,3,4. It is now an established technique that utilizes electrospray ionization (ESI)5 and high-resolution mass analyzers6, and sophisticated dissociation techniques, e.g., electron transfer dissociation (ETD), electron capture dissociation (ECD)7, ultraviolet photo-dissociation (UV-PD)8, etc.

The o....

Protocol

1. Microbiological sample preparation

  1. Inoculate 25 mL of Luria broth (LB) in a 50 mL conical tube with E. coli O113:H21 strain RM7788 (or another bacterial strain) from a glycerol stock using a sterile 1 µL loop. Cap the tube and pre-culture at 37 °C with shaking (200 rpm) for 4 h.
  2. Aliquot 100 µL of pre-cultured broth and spread onto a LB agar plate supplemented with 400 or 800 ng/mL of mitomycin-C. Culture agar plates statically overnight in an incubator at 37 °C.
    .......

Representative Results

Figure 3 (top panel) shows the MS of STEC O113:H21 strain RM7788 cultured overnight on LBA supplemented with 400 ng/mL mitomycin-C. Peaks at m/z 7276, 7337, and 7841 had been identified previously as cold-shock protein C (CspC), cold-shock protein E (CspE), and a plasmid-borne protein of unknown function, respectively33. The protein ion at m/z 9780 [M+H]+ was analyzed by MS/MS-PSD as shown in Figure 3 (bottom panel). The p.......

Discussion

Protocol considerations
The primary strengths of the current protocol are its speed, simplicity of sample preparation, and use of an instrument that is relatively easy to operate, be trained on, and maintain. Although bottom-up and top-down proteomic analysis by liquid chromatography-ESI-HR-MS are ubiquitous and far superior in many respects to top-down by MALDI-TOF-TOF, they require more time, labor, and expertise. Instrument complexity can often affect whether certain instrument platforms are lik.......

Acknowledgements

Protein Biomarker Seeker software is freely available (at no cost) by contacting Clifton K. Fagerquist at clifton.fagerquist@usda.gov. We wish to acknowledge support of this research by ARS, USDA, CRIS grant: 2030-42000-051-00-D.

....

Materials

NameCompanyCatalog NumberComments
4000 Series Explorer softwareAB SciexVersion 3.5.3
4800 Plus MALDI TOF/TOF AnalyzerAB Sciex
Acetonitrile Optima LC/MS gradeFisher ChemicalA996-1
BSL-2 biohazard cabinetThe Baker CompanySG403A-HE
Cytochrome-CSigmaC2867-10MG
Data Explorer softwareAB SciexVersion 4.9
Focus Protein Reduction-Alkylation kitG-Biosciences786-231
GPMAW softwareLighthouse DataVersion 10.0
IncubatorVWR9120973
LB AgarInvitrogen22700-025
Luria BrothInvitrogen12795-027
LysozymeSigmaL4919-1G
Microcentrifuge Tubes, 2 mL, screw-cap, O-ringFisher Scientific02-681-343
MiniSpin Plus CentrifugeEppendorf22620207
Mitomycin-C (from streptomyces)Sigma-AldrichM0440-5MG
MyoglobinSigmaM5696-100MG
Shaker MaxQ 420HP Model 420Thermo ScientificModel 420
Sinapinic acidThermo Scientific1861580
Sterile 1 uL loopsFisher Scientific22-363-595
Thioredoxin (E. coli, recombinant)SigmaT0910-1MG
Trifluoroacetic acidSigma-Aldrich299537-100G
Water Optima LC/MS gradeFisher ChemicalW6-4

References

Explore More Articles

Escherichia ColiAntibacterial Immunity ProteinsMALDI TOF TOF MS MSTop down ProteomicsMass SpectrometryBacterial Protein IdentificationAntibiotic InductionSample PreparationHPLC grade WaterSinapinic AcidMS Linear Mode AcquisitionMS MS Reflectron Mode AcquisitionPrecursor MassIsolation WidthCIDMetastable Suppressor

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved