JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Selection of Transporter-Targeted Inhibitory Nanobodies by Solid-Supported-Membrane (SSM)-Based Electrophysiology

Published: May 3rd, 2021



1Biozentrum, University of Basel

Nanobodies are important tools in structural biology and pose a great potential for the development of therapies. However, the selection of nanobodies with inhibitory properties can be challenging. Here we demonstrate the use of solid-supported-membrane (SSM)-based electrophysiology for the classification of inhibitory and non-inhibitory nanobodies targeting electrogenic membrane transporters.

Single domain antibodies (nanobodies) have been extensively used in mechanistic and structural studies of proteins and they pose an enormous potential as tools for developing clinical therapies, many of which depend on the inhibition of membrane proteins such as transporters. However, most of the methods used to determine the inhibition of transport activity are difficult to perform in high-throughput routines and depend on labeled substrates availability thereby complicating the screening of large nanobody libraries. Solid-supported membrane (SSM) electrophysiology is a high-throughput method, used for characterizing electrogenic transporters and measuring their transport kinetics and inhibition. Here we show the implementation of SSM-based electrophysiology to select inhibitory and non-inhibitory nanobodies targeting an electrogenic secondary transporter and to calculate nanobodies inhibitory constants. This technique may be especially useful for selecting inhibitory nanobodies targeting transporters for which labeled substrates are not available.

Antibodies are composed of two identical heavy chains and two light chains that are responsible for the antigen binding. Camelids have heavy-chain only antibodies that exhibit similar affinity for their cognate antigen compared to conventional antibodies1,2. The single variable domain (VHH) of heavy-chain only antibodies retain the full antigen-binding potential and has been shown to be very stable1,2. These isolated VHH molecules or "nanobodies" have been implemented in studies related to membrane proteins biochemistry as tools for stabilizing....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Membrane protein reconstitution

  1. Mix 3 mL of E. coli polar lipids with 1 mL of phosphatidylcholine in a round bottom flask under a ventilated hood.
  2. Dry the lipid mixture for 20 min under vacuum using a rotary evaporator and a water bath at 37 °C to remove chloroform. If needed, dry further under nitrogen or argon gas.
  3. Using TS buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl) containing 2 mM β-mercaptoethanol, resuspend lipids to 25 mg/mL.
  4. Aliquot lipids in 500 .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

SSM-based electrophysiology has been extensively used for the characterization of electrogenic transporters. In the protocol presented here, we show how to use SSM-based electrophysiology to classify nanobodies targeting a secondary transporter (here a bacterial choline symporter) based on their inhibitory and non-inhibitory properties. One of the most useful features of this technique is that it allows for the high-throughput screening of multiple buffer conditions. This particular characteristic is beneficial for the a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The technique presented here classifies nanobodies with inhibitory and non-inhibitory properties targeting electrogenic transporters. Assessing the substrate transport is possible due to the detection of the movement of charges through the transporter embedded in the membrane of proteoliposomes. Some of the critical steps during the setup of an experiment are reconstitution of active protein in liposomes, preparation of stable monolayers on SSM chips, and recovering of initial conditions after the application of the wash.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Cedric A. J. Hutter and Markus A. Seeger from the Institute of Medical Microbiology at the University of Zurich, and Gonzalo Cebrero from Biozentrum of the University of Basel for collaboration in the generation of synthetic nanobodies (sybodies). We thank Maria Barthmes and Andre Bazzone from NANION Technologies for technical assistance. This work was supported by the Swiss National Science Foundation (SNSF) (PP00P3_170607 and NANION Research Grant Initiative to C.P.).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
1-octadecanethiol solution Sigma Aldrich O1858-25ML
1,2-diphytanoyl-sn-glycero-3-phosphocholine Avanti Polar Lipids 850356C-25mg
Bio-Beads SM-2 Adsorbent (Polystyrene adsorbent beads) BioRad #152-3920
PD 10 Desalting Columns GE Healthcare GE17-0851-01
Filter 200 nm membrane Whatman Nucleopore WHA800282
2-Propanol Merck 33539-1L-R
n-Decane Sigma Aldrich 8034051000
n-dodecyl-ß-D-maltoside (DDM) Avanti Polar Lipids 850520P-25g
Sodium Chloride AppliChem 131659.1211
(SSM setup) SURFE2R N1 Nanion -----
SURFE2R N1 Single Sensor Chips Nanion # 161001
Trizma Base Sigma Aldrich T1503
E. coli Polar Lipid Extract Avanti Polar Lipids 100600C
Egg PC L-α-phosphatidylcholine Avanti Polar Lipids 840051C

  1. Braden, B. C., Goldman, E. R., Mariuzza, R. A., Poljak, R. J. Anatomy an antibody molecule: structure, kinetics, thermodynamics, and mutational studies of the antilysozyme antibody D1.3. Immunology Reviews. 163, 45-57 (1998).
  2. Hamers-Casterman, C., et al. Naturally occurring antibodies devoid of light chains. Nature. 363, 446-448 (1993).
  3. Perez, C., et al. Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Science Reports. 7, 46641 (2017).
  4. Grahl, A., Abiko, L. A., Isogai, S., Sharpe, T., Grzesiek, S. A high-resolution description of beta1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nature Communication. 11, 2216 (2020).
  5. Schenck, S., et al. Generation and characterization of anti-VGLUT nanobodies acting as inhibitors of transport. Biochemistry. 56, 3962-3971 (2017).
  6. Mireku, S. A., Sauer, M. M., Glockshuber, R., Locher, K. P. Structural basis of nanobody-mediated blocking of BtuF, the cognate substrate-binding protein of the Escherichia coli vitamin B12 transporter BtuCD. Science Reports. 7, 14296 (2017).
  7. Manglik, A., Kobilka, B. K., Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annual Reviews of Pharmacology Toxicology. 57, 19-37 (2017).
  8. Rasmussen, S. G., et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature. 469 (2), 175-180 (2011).
  9. Jiang, X., et al. Crystal structure of a LacY-nanobody complex in a periplasmic-open conformation. Proceeding of the National Academy of Science U. S. A. 113, 12420-12425 (2016).
  10. Geertsma, E. R., et al. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nature Structural Molecular Biology. 22, 803-808 (2015).
  11. Harmsen, M. M., De Haard, H. J. Properties, production, and applications of camelid single-domain antibody fragments. Applied Microbiology and Biotechnology. 77, 13-22 (2007).
  12. Pardon, E., et al. A general protocol for the generation of nanobodies for structural biology. Nature Protocols. 9, 674-693 (2014).
  13. Nguyen, V. K., Desmyter, A., Muyldermans, S. Functional heavy-chain antibodies in Camelidae. Advances in Immunology. 79, 261-296 (2001).
  14. Zimmermann, I., et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife. 7, 34317 (2018).
  15. McMahon, C., et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural Molecular Biology. 25, 289-296 (2018).
  16. Olichon, A., de Marco, A. Preparation of a naive library of camelid single domain antibodies. Methods in Molecular Biology. 911, 65-78 (2012).
  17. Moutel, S., et al. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife. 5, 16228 (2016).
  18. Yan, J., Li, G., Hu, Y., Ou, W., Wan, Y. Construction of a synthetic phage-displayed nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. Journal of Translational Medicine. 12, 343 (2014).
  19. Sabir, J. S., et al. Construction of naive camelids VHH repertoire in phage display-based library. Comptes Rendus Biologies. 337, 244-249 (2014).
  20. Yau, K. Y., et al. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. Journal of Immunology Methods. 281, 161-175 (2003).
  21. vander Linden, R. H., et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochimica et Biophysica Acta. 1431, 37-46 (1999).
  22. Dumoulin, M., et al. Single-domain antibody fragments with high conformational stability. Protein Science. 11, 500-515 (2002).
  23. Iezzi, M. E., Policastro, L., Werbajh, S., Podhajcer, O., Canziani, G. A. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Frontiers in Immunology. 9, 273 (2018).
  24. Yu, X., et al. Nanobodies derived from camelids represent versatile biomolecules for biomedical applications. Biomaterials Science. 8, 3559-3573 (2020).
  25. Jahnichen, S., et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Science U. S. A. 107, 20565-20570 (2010).
  26. Nguyen, V. S., et al. Inhibition of type VI secretion by an anti-TssM llama nanobody. PLoS One. 10, 0122187 (2015).
  27. Bazzone, A., Barthmes, M., Fendler, K. SSM-Based Electrophysiology for Transporter Research. Methods in Enzymology. 594, 31-83 (2017).
  28. Schulz, P., Garcia-Celma, J. J., Fendler, K. SSM-based electrophysiology. Methods. 46, 97-103 (2008).
  29. Barthmes, M., Liao, J., Jiang, Y., Bruggemann, A., Wahl-Schott, C. Electrophysiological characterization of the archaeal transporter NCX_Mj using solid supported membrane technology. Journal of General Physiology. 147, 485-496 (2016).
  30. Watzke, N., Diekert, K., Obrdlik, P. Electrophysiology of respiratory chain complexes and the ADP-ATP exchanger in native mitochondrial membranes. Biochemistry. 49, 10308-10318 (2010).
  31. Zuber, D., et al. Kinetics of charge translocation in the passive downhill uptake mode of the Na+/H+ antiporter NhaA of Escherichia coli. Biochim Biophys Acta. 1709, 240-250 (2005).
  32. Garcia-Celma, J. J., Smirnova, I. N., Kaback, H. R., Fendler, K. Electrophysiological characterization of LacY. Proceedings of the National Academy of Science U. S. A. 106, 7373-7378 (2009).
  33. Bazzone, A., Madej, M. G., Kaback, H. R., Fendler, K. pH regulation of electrogenic sugar/H+ symport in MFS sugar permeases. PLoS One. 11, 0156392 (2016).
  34. Williamson, G., et al. A two-lane mechanism for selective biological ammonium transport. Elife. 9, 57183 (2020).
  35. Mirandela, G. D., Tamburrino, G., Hoskisson, P. A., Zachariae, U., Javelle, A. The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB. FASEB Journal. 33, 1989-1999 (2019).
  36. Kaplan, R. S., Pedersen, P. L. Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. Annals of Biochemistry. 150, 97-104 (1985).
  37. Kermani, A. A., et al. The structural basis of promiscuity in small multidrug resistance transporters. Nature Communication. 11, 6064 (2020).
  38. Weitz, D., et al. Functional and structural characterization of a prokaryotic peptide transporter with features similar to mammalian PEPT1. Journal of Biological Chemistry. 282, 2832-2839 (2007).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved