A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Nanobodies are important tools in structural biology and pose a great potential for the development of therapies. However, the selection of nanobodies with inhibitory properties can be challenging. Here we demonstrate the use of solid-supported-membrane (SSM)-based electrophysiology for the classification of inhibitory and non-inhibitory nanobodies targeting electrogenic membrane transporters.
Single domain antibodies (nanobodies) have been extensively used in mechanistic and structural studies of proteins and they pose an enormous potential as tools for developing clinical therapies, many of which depend on the inhibition of membrane proteins such as transporters. However, most of the methods used to determine the inhibition of transport activity are difficult to perform in high-throughput routines and depend on labeled substrates availability thereby complicating the screening of large nanobody libraries. Solid-supported membrane (SSM) electrophysiology is a high-throughput method, used for characterizing electrogenic transporters and measuring their transport kinetics and inhibition. Here we show the implementation of SSM-based electrophysiology to select inhibitory and non-inhibitory nanobodies targeting an electrogenic secondary transporter and to calculate nanobodies inhibitory constants. This technique may be especially useful for selecting inhibitory nanobodies targeting transporters for which labeled substrates are not available.
Antibodies are composed of two identical heavy chains and two light chains that are responsible for the antigen binding. Camelids have heavy-chain only antibodies that exhibit similar affinity for their cognate antigen compared to conventional antibodies1,2. The single variable domain (VHH) of heavy-chain only antibodies retain the full antigen-binding potential and has been shown to be very stable1,2. These isolated VHH molecules or "nanobodies" have been implemented in studies related to membrane proteins biochemistry as tools for stabilizing conformations3,4, as inhibitors5,6, as stabilization agents7, and as gadgets for structure determination8,9,10. Nanobodies can be generated by the immunization of camelids for the pre-enrichment of B-cells that encode target-specific nanobodies and subsequent isolation of B cells, followed by cloning of the nanobody library and selection by phage display11,12,13. An alternate way to generate nanobodies is based on in vitro selection methods that rely on the construction of libraries and selection by phage display, ribosome display, or yeast display14,15,16,17,18,19,20. These in vitro methods require large library sizes but benefit from avoiding animal immunization and favor the selection of nanobodies targeting proteins with relatively low stability.
The small size of nanobodies, their high stability and solubility, strong antigen affinity, low immunogenicity, and relatively easy production, make them strong candidates for the development of therapeutics21,22,23. In particular, nanobodies inhibiting the activity of multiple membrane proteins are potential assets for clinical applications5,24,25,26. In the case of membrane transporters, to evaluate whether a nanobody has inhibitory activity, it is necessary to develop an assay that allows the detection of transported substrates and/or co-substrates. Such assays usually involve labeled molecules or the design of substrate-specific detection methods, which may lack a universal application. Furthermore, the identification of inhibitory nanobodies generally requires the screening of large numbers of binders. Thus, a method that can be used in a high-throughput mode and that does not rely on labeled substrates is essential for this selection.
SSM-based electrophysiology is an extremely sensitive, highly time-resolved technique that allows the detection of movement of charges across membranes (e.g., ion binding/transport)27,28. This technique has been applied to characterize electrogenic transporters, which are difficult to study using other electrophysiology techniques due to the relative low turnover of these proteins29,30,31,32,33,34,35. SSM electrophysiology does not require the use of labeled substrates, it is suitable for high-throughput screening, and either proteoliposomes or membrane vesicles containing the transporter of interest can be used. Here, we demonstrate that SSM-based electrophysiology can be used to classify transporter-targeted nanobodies with inhibitory and non-inhibitory properties. As a proof-of-principle, we describe the reconstitution of a bacterial choline transporter into liposomes, followed by detailed steps for immobilization of proteoliposomes on the SSM sensors. We next describe how to perform SSM-based electrophysiology measurements of choline transport and how to determine the half-maximal effective concentration (EC50). We then show how to use SSM-based electrophysiology to screen multiple nanobodies and to identify inhibitors of choline transport. Finally, we describe how to determine the half maximal inhibitory concentrations (IC50) of selected inhibitory nanobodies.
Access restricted. Please log in or start a trial to view this content.
1. Membrane protein reconstitution
2. Chip preparation
3. Measuring the solute transportation: determination of saturation conditions
NOTE: As proof-of-principle, these experiments were performed using a bacterial choline transporter reconstituted in liposomes following the protocol described above. The step-by-step process of determining saturating conditions of the substrate choline prior to the measurement of inhibition by nanobodies is shown here.
4. Serial classification of inhibitory and non-inhibitory nanobodies
NOTE: This section shows how to measure choline transport in the presence of nanobodies that bind specifically to the bacterial choline transporter. Smaller peak currents in the presence of nanobodies indicate transport inhibition. Non-inhibitory nanobodies will not impact substrate transport, i.e., no decrease of the peak current signal.
5. IC50 measurement with inhibitory nanobodies
NOTE: After identifying inhibitory nanobodies, it is possible to determine their half maximal inhibitory concentration (IC50). This is done by measuring the transport of choline at constant concentration, while varying concentrations of the inhibitory nanobody.
6. Cleaning of sensors
Access restricted. Please log in or start a trial to view this content.
SSM-based electrophysiology has been extensively used for the characterization of electrogenic transporters. In the protocol presented here, we show how to use SSM-based electrophysiology to classify nanobodies targeting a secondary transporter (here a bacterial choline symporter) based on their inhibitory and non-inhibitory properties. One of the most useful features of this technique is that it allows for the high-throughput screening of multiple buffer conditions. This particular characteristic is beneficial for the a...
Access restricted. Please log in or start a trial to view this content.
The technique presented here classifies nanobodies with inhibitory and non-inhibitory properties targeting electrogenic transporters. Assessing the substrate transport is possible due to the detection of the movement of charges through the transporter embedded in the membrane of proteoliposomes. Some of the critical steps during the setup of an experiment are reconstitution of active protein in liposomes, preparation of stable monolayers on SSM chips, and recovering of initial conditions after the application of the wash...
Access restricted. Please log in or start a trial to view this content.
The authors declare no competing financial interests.
We thank Cedric A. J. Hutter and Markus A. Seeger from the Institute of Medical Microbiology at the University of Zurich, and Gonzalo Cebrero from Biozentrum of the University of Basel for collaboration in the generation of synthetic nanobodies (sybodies). We thank Maria Barthmes and Andre Bazzone from NANION Technologies for technical assistance. This work was supported by the Swiss National Science Foundation (SNSF) (PP00P3_170607 and NANION Research Grant Initiative to C.P.).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
1-octadecanethiol solution | Sigma Aldrich | O1858-25ML | |
1,2-diphytanoyl-sn-glycero-3-phosphocholine | Avanti Polar Lipids | 850356C-25mg | |
Bio-Beads SM-2 Adsorbent (Polystyrene adsorbent beads) | BioRad | #152-3920 | |
PD 10 Desalting Columns | GE Healthcare | GE17-0851-01 | |
Filter 200 nm membrane | Whatman Nucleopore | WHA800282 | |
2-Propanol | Merck | 33539-1L-R | |
n-Decane | Sigma Aldrich | 8034051000 | |
n-dodecyl-ß-D-maltoside (DDM) | Avanti Polar Lipids | 850520P-25g | |
Sodium Chloride | AppliChem | 131659.1211 | |
(SSM setup) SURFE2R N1 | Nanion | ----- | |
SURFE2R N1 Single Sensor Chips | Nanion | # 161001 | |
Trizma Base | Sigma Aldrich | T1503 | |
E. coli Polar Lipid Extract | Avanti Polar Lipids | 100600C | |
Egg PC L-α-phosphatidylcholine | Avanti Polar Lipids | 840051C |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved