Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Microinjection techniques are essential to introduce exogenous genes into the genomes of mosquitoes. This protocol explains a method used by the James laboratory to microinject DNA constructs into Anopheles gambiae embryos to generate transformed mosquitoes.

Abstract

Embryo microinjection techniques are essential for many molecular and genetic studies of insect species. They provide a means to introduce exogenous DNA fragments encoding genes of interest as well as favorable traits into the insect germline in a stable and heritable manner. The resulting transgenic strains can be studied for phenotypic changes resulting from the expression of the integrated DNA to answer basic questions or used in practical applications. Although the technology is straightforward, it requires of the investigator patience and practice to achieve a level of skill that maximizes efficiency. Shown here is a method for microinjection of embryos of the African malaria mosquito, Anopheles gambiae. The objective is to deliver by microinjection exogenous DNA to the embryo so that it can be taken up in the developing germline (pole) cells. Expression from the injected DNA of transposases, integrases, recombinases, or other nucleases (for example CRISPR-associated proteins, Cas) can trigger events that lead to its covalent insertion into chromosomes. Transgenic An. gambiae generated from these technologies have been used for basic studies of immune system components, genes involved in blood-feeding, and elements of the olfactory system. In addition, these techniques have been used to produce An. gambiae strains with traits that may help control the transmission of malaria parasites.

Introduction

Microinjection techniques have been used to experimentally manipulate organisms since the early 1900s1. Microinjection has been used to study both basic biological functions and/or introduce important changes in the biology of a desired organism. The microinjection technique has been of particular interest to vector biologists and has been widely used to manipulate vector genomes2-11. Transgenesis experiments in arthropod vectors often aim to make vectors less efficient at transmitting pathogens by either enacting changes that decrease a vector's fitness or increase refractoriness to the patho....

Protocol

1. Preparing mosquitoes for microinjection

  1. Seed a cage13 (~5000 cm3) with ~100 male and 200-300 female 1-2 day adult post-eclosion mosquitoes and allow them to mate for 2 days.
  2. After the mating period, provide mosquitoes a blood meal using either 2 mL of blood with an artificial feeding device or live anesthetized animals depending on insectary practices14. The following day provide mosquitoes a second blood meal to ensure that all mated fem.......

Representative Results

A representative example of the application of the microinjection protocol described can be found in Carballar-Lejarazú et al5. The intent here was to insert an autonomous gene-drive system into the germline of a laboratory strain, G3, of An. gambiae. The system was designed to target the cardinal ortholog locus (Agcd) on the third chromosome in this species, which encodes a heme peroxidase that catalyzes the conversion of 3-hydroxykynurenine to xanthommatin, t.......

Discussion

With the increased availability of precise and flexible genetic engineering technologies such as CRISPR/Cas9, transgenic organisms can be developed in a more straightforward and stable way than previously possible. These tools have allowed researchers to create transgenic strains of mosquito vectors that are very close to achieving the desired properties of either refractoriness to pathogens (population modification) or heritable sterility (population suppression). However, to develop the most safe and stable genetically.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are grateful to Drusilla Stillinger, Kiona Parker, Parrish Powell and Madeline Nottoli for mosquito husbandry. Funding was provided by the University of California, Irvine Malaria Initiative. AAJ is a Donald Bren Professor at the University of California, Irvine.

....

Materials

NameCompanyCatalog NumberComments
10x Microinjection Buffer--1 mM NaHPO4 buffer, pH 6.8, 50 mM KCl
Blotting membrane (Zeta-Probe GT Genomic Tested Blotting Membrane)Bio-RadNeatly and straightly cut into 2x1 cm piece
Conical tubes 50 ml (disposable centrifuge tube, polypropylene)Fisher BrandEnds cut
De-ionized or double-distilled water (ddH20) Mili-QIn a wash bottle 
Dissecting microscope Leica Leica MZ12For embryo alignment
Forceps No. 5 size 
Glass container PyrexNo. 3140125 x 65
Glass slide Fisher BrandNo. 12-549-375x26 mm
IncubatorBarnsted Lab-lineModel No. 15028 °C
KCl50 mM
Latex dental film Crosstex InternationalNo. 19302
MicroinjectorSutter InstrumentXenoWorks Digital Microinjector
Microloader Pipette tips Eppendorf 20 µL microloader epT.I.P.S.
MicromanipulatorSutter InstrumentXenoWorks Micromanipulator
Micropipette Rainin 20 µL
Micropipette puller Sutter InstrumentSutter P-2000 micropipette puller
Microscope LeicaDM 1000 LED or M165 FCFor microinjection
Minimum fiber filter paper Fisher BrandNo. 05-714-4Chromatography Paper, Thick 
Mosquitoes MR4, BEI ResourcesAnopheles gambiae, mated adult females, blood-fed 4-5 days post-eclosion
NaHPO4 buffer 1 mM, ph 6.8
Nylon mesh
Paint brushBlickNo. 05831-7040Fine, size 4/0
Petri dishPlastic, (60x15 mm, 90x15 mm)
Sodium acetate 3M
Quartz glass capillaries Sutter InstrumentNo. QF100-70-10With filament, 1 mm OD,  ID 0.7 10 cm length
Water PCR grade RocheNo. 03315843001

References

  1. Feramisco, J., Perona, R., Lacal, J. C., Lacal, J. C., Feramisco, J., Perona, R. Needle Microinjection: A Brief History. Microinjection. Methods and Tools in Biosciences and Medicine. , (1999).
  2. Windbichler, N., et al. A synthetic homin....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

MicroinjectionAnopheles GambiaeEmbryosTransgenicMalariaPopulation SuppressionMosquito SpeciesAspiratorConical TubeDental FilmNylon MeshFilter PaperIncubatorForcepsPetri DishMembraneFilter PaperMicroloader TipNeedle HolderAutomated Pressure Pump

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved