Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The shrinkage of dental cement during curing displaces the baseplate. This protocol minimizes the problem by creating an initial foundation of the dental cement that leaves space to cement the baseplate. Weeks later, the baseplate can be cemented in position on this scaffold using little new cement, therebyreducing shrinkage.

Abstract

Neuroscientists use miniature microscopes (miniscopes) to observe neuronal activity in freely behaving animals. The University of California, Los Angeles (UCLA) Miniscope team provides open resources for researchers to build miniscopes themselves. The V3 UCLA Miniscope is one of the most popular open-source miniscopes currently in use. It permits imaging of the fluorescence transients emitted from genetically modified neurons through an objective lens implanted on the superficial cortex (a one-lens system), or in deep brain areas through a combination of a relay lens implanted in the deep brain and an objective lens that is preanchored in the miniscope to observe the relayed image (a two-lens system). Even under optimal conditions (when neurons express fluorescence indicators and the relay lens has been properly implanted), a volume change of the dental cement between the baseplate and its attachment to the skull upon cement curing can cause misalignment with an altered distance between the objective and relay lenses, resulting in the poor image quality. A baseplate is a plate that helps mount the miniscope onto the skull and fixes the working distance between the objective and relay lenses. Thus, changes in the volume of the dental cement around the baseplate alter the distance between the lenses. The present protocol aims to minimize the misalignment problem caused by volume changes in the dental cement. The protocol reduces the misalignment by building an initial foundation of dental cement during relay lens implantation. The convalescence time after implantation is sufficient for the foundation of dental cement to cure the baseplate completely, so the baseplate can be cemented on this scaffold using as little new cement as possible. In the present article, we describe strategies for baseplating in mice to enable imaging of neuronal activity with an objective lens anchored in the miniscope.

Introduction

Fluorescent activity reporters are ideal for imaging of the neuronal activity because they are sensitive and have large dynamic ranges1,2,3. Therefore, an increasing number of experiments are using fluorescence microscopy to directly observe neuronal activity1,2,3,4,5,6,7,8,9

Protocol

All procedures performed in this study were approved by the National Taiwan University Animal Care and Use Committee (Approval No.: NTU-109-EL-00029 and NTU-108-EL-00158).

1. Assessment of the volume alteration of dental cement

NOTE: Changes in the volume of dental cement occur during the curing process. Test the volume changes of dental cement before implantation and baseplating. Researchers can test any brand of dental cement an.......

Representative Results

Assessment of the dental cement volume alteration
Since the volume of dental cement changes during the curing process, it may significantly impact the imaging quality, given that the working distance of a GRIN lens is approximately 50 to 350 µm4,8. Therefore, two commercially available dental cements were tested in this case, Tempron and Tokuso, before the implantation and baseplating procedure (Figure 5)........

Discussion

The present report describes a detailed experimental protocol for researchers using the two-lens UCLA Miniscope system. The tools designed in our protocol are relatively affordable for any laboratory that wishes to try in vivo calcium imaging. Some protocols, such as viral injection, lens implantation, dummy baseplating, and baseplating, could also be used for other versions of the miniscope system to improve the success rate of calcium imaging. Other than general problems with viral injection, and lens implanta.......

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan (108-2320-B-002 -074, 109-2320-B-002-023-MY2).

....

Materials

NameCompanyCatalog NumberComments
0.7-mm drill bit #19008-07Fine Science Tools; USAfor surgery
0.1–10 μl pipette tips104-Q; QSPFisher Scientific; Singaporefor testing dental cement
20 G IV cathater#SR-OX2032CATerumo Corporation; Tokyo, Japanfor surgery
27 G needleAGANI, AN*2713RTerumo Corporation; Tokyo, Japanfor surgery
AAV9-syn-jGCaMP7s-WPRE#104487-AAV9; 1.5*10^13Addgene viral prep; MA, USAfor viral injection
Atropine sulfateAstart; Hsinchu, Taiwanfor surgery/dummy baseplating/baseplating
BaseplateV3http://miniscope.orgfor dummy baseplating/baseplating
BLU TACK#30840350Bostik; Chelsea, Massachusetts, USAReusable adhesive clay; for surgery/dummy baseplating/baseplating
Bone Rongeur Friedman13 cmDiener; Tuttlingen, Germanyfor baseplating
BuprenorphineINDIVIOR; UKfor surgery
CarprofenRimadylZoetis; Exton, PAanalgesia
CeftazidimeTaiwan Biotech; Taiwanprevent infection
Data Acquisition PCB for UCLA Miniscopepurchased on https://www.labmaker.org/collections/neuroscience/products/data-aquistion-system-daqfor baseplating
Dental cement setTempronGC Corp; Tokyo, Japanfor testing dental cement
Dental cement setTokuso CurefastTokuyama Dental Corp.; Tokyo, Japanfor testing dental cement/surgery/dummy baseplating/baseplating
Dual Lab Standard with Mouse and Rat Adaptors#51673Stoelting Co; Illinois, USAfor surgery/dummy baseplating/baseplating
Duratear ointmentAlcon; Geneva, Switzerlandfor surgery/dummy baseplating/baseplating
IbuprofenYungShin; Taiwananalgesia
IsofluranePanion & BF Biotech INC.; Taoyuan, Taiwanfor surgery/dummy baseplating/baseplating
InscopixnVista SystemInscopix; Palo Alto, CAfor comparison with V3 UCLA Miniscope
KetaminePfizer; NY, NYfor euthanasia
Normal salinefor surgery
Micro bulldog clamps#12.102.04Dimedo; Tuttlingen, Germanyfor lens implantation
Microliter Microsyringes, 2.0 µL, 25 gauge#88400Hamilton; Bonaduz, Switzerlandfor viral injection
Molding silicone rubberZA22 ThixoZhermack; Badia Polesine, Italyfor dummy baseplating
Objective Gradient index (GRIN) lens#64519Edmund Optics; NJ, USAfor dummy baseplating/baseplating
Parafilm#PM996Bemis; Neenah, USAfor dummy baseplating
Portable Suction#DF-750Doctor's Friend Medical Instrument Co., Inc., Taichung, Taiwanfor surgery
Relay GRIN lens#1050-002177Inscopix; Palo Alto, CA, USAfor dummy baseplating/baseplating
Stainless steel anchor screws1.00 mm diameter, total length 3.00 mmfor surgery
Stereo microscope#SL720Sage Vison; New Taipei City, Taiwanfor surgery/dummy baseplating/baseplating
Stereotaxic apparatus#51673Stoelting; IL, USAfor surgery/dummy baseplating/baseplating
UV Cure Adhesive#3321Loctite; Düsseldorf, Germanyfor testing dental cement
V3 UCLA Miniscopepurchased on https://www.labmaker.org/products/miniscope-complete-set-of-componentsfor surgery/dummy baseplating/baseplating
XylazineX1126Sigma-Aldrich; St. Louis, MOfor euthanasia
Xylocaine pump spray 10%AstraZeneca; Södertälje, Swedenfor surgery

References

  1. Tian, L., Hires, S. A., Looger, L. L. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harbor Protocols. 2012 (6), 647-656 (2012).
  2. Grienberger, C., Konnerth, A. Imaging calcium in neurons.

Explore More Articles

BaseplatingMiniscopePreanchoredObjective LensCalcium TransientMiceFluorescence SignalsViral VectorRelay LensDental CementStereotaxic ArmMicroinjectionVentral Cornu Ammonis 1Pyrogen free SalineMicro Bulldog ClampHeat Shrink TubingParaffin FilmReusable Adhesive ClayMolding Silicone RubberBone Rongeur75 AlcoholSet ScrewFocus Slide

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved