Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol presents a technique for probing protein-protein interactions using glutathione-linked donor beads with GST-fused TPR-motif co-chaperones and acceptor beads coupled with an Hsp90-derived peptide. We have used this technique to screen small molecules to disrupt Hsp90-FKBP51 or Hsp90-FKBP52 interactions and identified potent and selective Hsp90-FKBP51 interaction inhibitors.

Abstract

Targeting the heat shock protein 90 (Hsp90)-cochaperone interactions provides the possibility to specifically regulate Hsp90-dependent intracellular processes. The conserved MEEVD pentapeptide at the C-terminus of Hsp90 is responsible for the interaction with the tetratricopeptide repeat (TPR) motif of co-chaperones. FK506-binding protein (FKBP) 51 and FKBP52 are two similar TPR-motif co-chaperones involved in steroid hormone-dependent diseases with different functions. Therefore, identifying molecules specifically blocking interactions between Hsp90 and FKBP51 or FKBP52 provides a promising therapeutic potential for several human diseases. Here, we describe the protocol for an amplified luminescent proximity homogenous assay to probe interactions between Hsp90 and its partner co-chaperones FKBP51 and FKBP52. First, we have purified the TPR motif-containing proteins FKBP51 and FKBP52 in glutathione S-transferase (GST)-tagged form. Using the glutathione-linked donor beads with GST-fused TPR-motif proteins and the acceptor beads coupled with a 10-mer C-terminal peptide of Hsp90, we have probed protein-protein interactions in a homogeneous environment. We have used this assay to screen small molecules to disrupt Hsp90-FKBP51 or Hsp90-FKBP52 interactions and identified potent and selective Hsp90-FKBP51 interaction inhibitors.

Introduction

Molecular chaperones contribute to protein homeostasis, including protein folding, transport, and degradation. They regulate several cellular processes and are linked to numerous diseases such as cancer and neurodegenerative diseases1. Heat shock protein 90 (Hsp90) is one of the most important chaperones whose function is dependent on conformational changes driven by ATP hydrolysis and binding with client proteins mediated by its co-chaperones2. Despite an obvious potential of Hsp90 as the therapeutic target, fine-tuning its function represents a big challenge. There are several Hsp90 inhibitors targeting the N-terminal ....

Protocol

NOTE: An overview of this protocol is shown in Figure 2.

1. Expression and purification of GST-FKBP51 and GST-FKBP52 (Figure 2A)

  1. Plasmids
    NOTE: Obtain cDNA clones for human FKBP51 (clone id: 5723416) and for human FKBP52 (clone id: 7474554) from IMAGE consortium.
    1. Amplify the human FKBP51 DNA by PCR with primers (forward; 5`GGATCCATGACTACTGATGAAGGT-3`, reverse; 5`-CTCGAGCTATGCTTCTGTCTCCAC.......

Representative Results

In our assay, Z' factor and S/B ratio are 0.82 and 13.35, respectively (Figure 3A), demonstrating that our assay is robust and reliable for high-throughput screening. We then used it to screen small molecular mass compounds. Figure 3B presents dose-dependent inhibition of chaperone-cochaperone interactions with a selected small molecule (D10). The dose-response curves for D10 are generated by nonlinear regression analysis, based on which the values of IC

Discussion

Here we describe a protocol using the assay for screening small molecules inhibiting interactions between Hsp90 and TPR-motif co-chaperones, especially FKBP51 and FKBP52. Its high Z' score (>0.8) demonstrates the robustness and reliability for a high-throughput format. Results can be obtained within one hour, and small amounts of beads, protein and compounds are required. Moreover, this protocol could easily be extended to any Hsp90/Hsp70 - TPR-motif co-chaperone interactions of interest. Several TPR-motif co-chaperon.......

Acknowledgements

This study was supported by grants from Swedish Research Council (2018-02843), Brain Foundation (Fo 2019-0140), Foundation for Geriatric Diseases at Karolinska Institutet, Gunvor and Josef Anérs Foundation, Magnus Bergvalls Foundation, Gun and Bertil Stohnes Foundation, Tore Nilssons Foundation for medical research, Margaretha af Ugglas foundation and the Foundation for Old Servants.

....

Materials

NameCompanyCatalog NumberComments
384-well platesPerkin Elmer6008350Assay volume 25 ml
Amicon 10.000 MWCO centrifugation unitMilliporeUFC901008Concentrate protein
AmpicillinSigmaA0166Antibiotics
Bacteria shaker Unimax 1010HeidolphCulture bacteria
cDNA clones for human FKBP51Source BioScienceclone id: 5723416pCMV-SPORT6 vector
cDNA clones for human FKBP52Source BioScienceclone id: 7474554pCMV-SPORT6 vector
Chemically Competent E. coliInvitrogenC602003One Shot BL21 Star (DE3)
Data analysis softwareGraphPad Prism9.0.0Analysis data and make figures
Data analysis softwareExcelAnalysis data
DMSOSupelco1.02952.1000Dilute compounds
DPBSGibco14190-144Prepare solution
EDTACalbiochem344504Prevent proteolysis during sonication
GlutathioneSigmaG-4251Elute GST-tagged proteins
Glutathione donor beadsPerkin Elmer6765300Donor bead
GST-trap columnCytiva (GE Healthcare)17528201Purify GST-tagged proteins
Isopropyl-β-D-thiogalactosideThermo Fisher ScientificR0392Induce protein expression
LB Broth (Miller)SigmaL3522Microbial growth medium
PCR instrumentBIO-RADS1000 Thermal CyclerAmplification/PCR
PD-10 columnCytiva (GE Healthcare)17085101Solution exchange
pGEX-6P-1 vectorCytiva (GE Healthcare)28954648Plasmid
pGEX-6P-2 vectorCytiva (GE Healthcare)28954650Plasmid
Plate readerPerkin ElmerEnSpire 2300 Multilabel ReaderRead alpha plate
Plate reader softwarePerkin ElmerEnSpire ManagerPlate reader software
Plate reader software protocolPerkin ElmerAlpha 384-well Low volumeUse this protocol to read plate
PMSFSigmaP7626Prevent proteolysis during sonication
protease inhibitor cocktailSigmaS8830Prevent proteolysis during sonication
Sodium azideSigmaS2002As a preservative
Sodium cyanoborohydride (NaBH3CN)Sigma156159Activates matrix for coupling
Ten amino acid peptide NH2-EDASRMEEVD-COOH corresponding to amino acids 714-724 of human Hsp90 beta isoformPeptide 2.0 incSynthesize Hsp90 C-terminal peptide
Test-Tube RotatorLABINCOMake end-over-end agitation
Tris-HClSigma10708976001Block unreacted sites of acceptor beads
Tween-20SigmaP1379Prevent beads aggregation
Ultra centrifuge Avanti J-20 XPBeckman CoulterCentrifuge to get bacteria cell pellets
Ultrasonic cell disruptorMicrosonSonicate cells to release protein
Unconjugated acceptor beadsPerkin Elmer6762003Acceptor beads
XCell SureLock Mini-Cell and XCell II Blot ModuleInvitrogenEI0002SDS-PAGE

References

  1. Muchowski, P. J., Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Reviews Neuroscience. 6 (1), 11-22 (2005).
  2. Eckl, J. M., Richter, K. Functions of the Hsp90 chaperone system: lifting clie....

Explore More Articles

Chaperone cochaperone InteractionsHsp90FKBP51FKBP52Homogeneous Bead based AssayHigh throughput ScreeningInhibitorsAlzheimer s DiseaseCancerAutoimmune DiseaseTPR DomainDonor And Acceptor BeadsHsp90 PeptideAcceptor Beads ConjugationGlutathione Donor BeadsGSTFKBP51DMSO

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved