A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes an efficient method for dissociating sputum into a single cell suspension and the subsequent characterization of cellular subsets on standard flow cytometric platforms.

Abstract

Sputum, widely used to study the cellular content and other microenvironmental features to understand the health of the lung, is traditionally analyzed using cytology-based methodologies. Its utility is limited because reading the slides is time-consuming and requires highly specialized personnel. Moreover, extensive debris and the presence of too many squamous epithelial cells (SECs), or cheek cells, often renders a sample inadequate for diagnosis. In contrast, flow cytometry allows for high-throughput phenotyping of cellular populations while simultaneously excluding debris and SECs.

The protocol presented here describes an efficient method to dissociate sputum into a single cell suspension, antibody stain and fix cellular populations, and acquire samples on a flow cytometric platform. A gating strategy that describes the exclusion of debris, dead cells (including SECs) and cell doublets is presented here. Further, this work also explains how to analyze viable, single sputum cells based on a cluster of differentiation (CD)45 positive and negative populations to characterize hematopoietic and epithelial lineage subsets. A quality control measure is also provided by identifying lung-specific macrophages as evidence that a sample is derived from the lung and is not saliva. Finally, it has been demonstrated that this method can be applied to different cytometric platforms by providing sputum profiles from the same patient analyzed on three flow cytometers; Navios EX, LSR II, and Lyric. Furthermore, this protocol can be modified to include additional cellular markers of interest. A method to analyze an entire sputum sample on a flow cytometric platform is presented here that makes sputum amenable for developing high-throughput diagnostics of lung disease.

Introduction

Technical advancements in the hardware and software of flow cytometers have made it possible to identify many distinct cell populations simultaneously1,2,3,4. The utilization of the flow cytometer in hematopoietic cell research, for example, has led to a much better understanding of the immune system2 and the cellular hierarchy of the hematopoietic system5, as well as the diagnostic distinction of a multitude of different blood cancers6,7,8. Although most sputum cells are of hematopoietic origin9,10,11, flow cytometry has not been widely applied to sputum analysis for diagnostic purposes. However, several studies suggest that the evaluation of immune cell populations in sputum (the most significant subset of cells) may be of great help in diagnosing and/or monitoring diseases such as asthma and chronic obstructive pulmonary disease (COPD)12,13,14,15. Moreover, the existence of epithelial-specific markers that can be used in flow cytometry allows the interrogation of the following most significant subset of cells in sputum, lung epithelial cells.

In addition to the ability to analyze many distinct cell populations of different tissue origins, a flow cytometer can evaluate large numbers of cells in a relatively short period. In comparison, slide-based, cytological types of analyses often require highly specialized personnel and/or equipment. These analyses can be labor-intensive, which leads to only a proportion of the sputum sample being analyzed16.

Three critical issues limit the widespread use of sputum in flow cytometry. The first issue relates to the collection of sputum. Sputum is collected through a huff cough that expels mucus from the lungs into the oral cavity, subsequently spitting into a collection cup. Since the mucus travels through the oral cavity, there is a high chance of SEC contamination. This contamination complicates the specimen analysis, but the problem is easily rectified on a flow cytometric platform, as shown in this study.

Not everyone can produce sputum spontaneously; therefore, several devices have been developed to assist with the sputum collection in a non-invasive manner17. The nebulizer is one such device and has been shown to produce reliable sputum samples18,19,20. Although the nebulizer is a very effective way of non-invasively collecting sputum, its use still requires a setting at a medical facility with specialized personnel21. In contrast, handheld devices such as the lung flute22,23,24 and the acapella16,25 can be used at home since they are very user-friendly. These assist devices are both safe and cost-effective.

For us, the acapella gave consistently better results than the lung flute16, and therefore, the acapella device has been chosen for sputum collections. A 3-day collection sample was decided because the primary purpose for using sputum is to develop a lung cancer detection test16. It has been shown that a 3-day sample increases the likelihood of lung cancer detection compared to a 1- or 2-day sample26,27,28. However, other methods of sputum collection may be preferable for different purposes. If a different sputum collection method is used than the one described here, it is recommended to carefully titrate each antibody or dye used for flow cytometric analysis; very little data is available on how different sputum collection methods affect the targeted proteins for flow cytometry.

The second issue dampening the enthusiasm for using sputum for diagnostics, primarily related to flow cytometry, is cell number. The problem is the collection of sufficient viable cells for a reliable analysis. Two studies demonstrated that sputum samples collected by non-invasive methods, with the help of an assist device, contain enough viable cells that can be utilized in clinical diagnosis or research studies16,24. However, neither of these studies addressed the issue of cell numbers concerning flow cytometry.

For the studies that form the basis for this protocol, sputum samples were collected from participants at high risk for developing lung cancer following approved institutional guidelines for each study site. High-risk participants were defined as between 55-75 years, having smoked 30 pack-years and having not quit smoking within the past 15 years. Patients were shown how to use the acapella device according to the manufacturer's instructions29 and collected sputum for three consecutive days at home. The sample was kept in the refrigerator until the last collection. On the final collection day, the sample was shipped to the laboratory overnight with a frozen cold pack. The samples were processed into a single cell suspension on the day they were received. With this method of sputum collection, more than enough viable cells are obtained for a reliable flow cytometric analysis.

Lastly, and related to the previous cell number issue, is the question of how to release the sputum cells from its mucinous environment. How can the cells be kept viable and create a single cell suspension that does not clog the flow cytometer? Based on initial work by Pizzichini et al.30 and Miller et al.31, this protocol describes an easy and reliable method for sputum processing into a single cell suspension that is suitable for flow cytometric analysis. This method has used well-established guidelines in flow cytometry32,33,34 to develop an efficient antibody labeling strategy to identify hematopoietic and epithelial cells in sputum and provide instrument settings, quality control measures, and analysis guidelines standardizing sputum analysis on a flow cytometric platform.

Protocol

All steps of the sputum processing are performed in a biological safety cabinet with appropriate personal protective equipment.

1. Reagent preparation before starting sputum dissociation

  1. Thaw 1% Paraformaldehyde (PFA), 25 mL per sample on ice, and keep cold until use.
    CAUTION: PFA is toxic by inhalation and skin contact. Prepare the fixative according to the manufacturer's instructions and freeze at -20 °C in 25 mL aliquots until use.
  2. Approximate the weight of the sample and thaw enough 0.1% Dithiothreitol (DTT) for step 2.2 and bring it to 37 °C. (Aliquots of DTT should be stored at -20 °C before use.)
  3. Bring enough 0.5% N-acetyl- L-cysteine (NAC) up to 37 °C for step 2.2. (NAC should be made fresh weekly and stored at 4 °C before use.)

2. Sputum dissociation

  1. Weigh the sputum sample to determine the volumes of dissociation reagents.
    NOTE: A sample is considered to be small if the initial weight is ≤3 g, medium if >3 g but ≤8 g, large if >8 but ≤16 g, and extra-large if a sample weighs >16 g. The indications small, medium, large, and extra-large will be used throughout the protocol. The quantity of reagents required for dissociation and labeling differ according to the size of the sputum sample.
  2. Transfer a small sample to a clean 50 mL conical tube, a medium sample to a clean 250 mL plastic disposable bottle, or a large and extra-large sample to a clean 500 mL plastic disposable bottle. Add 1 mL/g sample weight of 0.5% NAC and 4 mL/g sample weight of 0.1% DTT.
  3. Vortex at maximum speed (for 15 s), and then rock at room temperature (at maximum speed) for 15 min.
  4. Dilute the sample with four volumes of Hank's Balanced Salt Solution (HBSS) (based on the total volume of sample + reagents) to neutralize the NAC and DTT; vortex quickly at maximum speed and rock at room temperature for 5 min at maximum speed.
  5. Filter the cell suspension through 100 µm nylon mesh cell strainer(s) into one or more 50 mL conical centrifuge tube(s) to create a single-cell suspension.
  6. Centrifuge the cells at 800 x g for 10 min at 4 °C. Aspirate the supernatant, combine all pellets in one 15 mL conical tube, and then wash the pellets with HBSS using the same conditions.
  7. Resuspend the cell pellet in a volume of buffer determined by the initial weight of the sputum sample.
    NOTE: A small sample is resuspended in 250 µL of HBSS. A medium sample is resuspended in 760 µL of HBSS. Large and extra-large samples are resuspended in 1460 µL of HBSS.
  8. Take an aliquot of the cell suspension for a live/dead cell count using Trypan Blue.
    NOTE: For a small sample, use 5 µL. For a medium, large or extra-large sample, use 10 µL. Dilute 1:10 with HBSS.
    1. Mix 10 µL of the sputum dilution with 30 µL of 0.4% Trypan Blue to achieve a final sample dilution of 1:40. Load into the counting chambers of a hemocytometer for a cell count.
      NOTE: It may be necessary to adjust the final dilution if the cell numbers are too low or too high to achieve an accurate count. Consulting Guiot et al.20 for correctly distinguishing sputum cells from SECs and debris is strongly recommended here. This is essential for an accurate cell count.
  9. From the extra-large sample, remove 50 x 106 cells from the total and add to a new tube with enough added HBSS to create a total volume of 1700 µL.
    ​NOTE: Consider this a large sample for the remainder of the protocol. Leftover samples can be discarded or used for other purposes.

3. Antibody and viability dye staining

  1. Choice of antibody and staining dye
    NOTE: Table 1 shows the antibodies and viability dye that are used in this protocol and the cell populations they identify.
    1. Label the tubes containing the sputum cells (see Table 2 for labels).
    2. Use 5 mL flow cytometry tubes (compatible with the flow cytometer used) for the sample tube with the unstained cells and the tube with the isotype control. Use 15 mL conical tubes for the blood and epithelial tube samples.
      NOTE: These samples will be transferred to flow cytometry tubes following antibody staining and fixation.
  2. Label the compensation tubes (Table 3).
    NOTE: Use 5 mL flow cytometry tubes compatible with the flow cytometer being used.
  3. Add the amount of HBSS, antibody and/or dye to each of the sputum cell tubes and compensation tubes as indicated in Table 2 and Table 3, respectively.
    NOTE: Add buffer (HBBS), antibodies, and dye to all the tubes before adding cells or compensation beads to ensure that all tubes' staining time is consistent.
  4. Add the amounts of sputum cell volume listed in Table 2 to the assay tubes.
  5. Add compensation beads to the compensation tubes as listed in Table 3.
  6. Incubate all the tubes (assay and compensation tubes) on ice, protected from light, for 35 min. Then, fill the tubes with ice-cold HBSS and centrifuge at 4 °C for 10 min at 800 x g.
  7. For the compensation tubes, aspirate the supernatant as close to the pellets as possible and flick the pellets to loosen.
  8. Add 0.5 mL of cold HBSS to the compensation tubes, store them on the ice at 4 °C and protect them from light until needed for flow cytometry analysis.
  9. Aspirate the supernatant from the unstained isotype, blood, and epithelial tubes after centrifugation (step 3.6 from the antibody staining section) and loosen the pellets by flicking the tubes.

4. Fixation with 1% Paraformaldehyde (PFA)

  1. Add cold 1% PFA (which should be thawed by now) to the unstained, isotype, blood, and epithelial tubes; 2 mL to the unstained and isotype tubes, and 10 mL to the blood and epithelial tubes.
  2. Incubate the tubes on ice, protected from light for 1 h. Vortex quickly at maximum speed after 30 min.
  3. Fill the tubes with ice-cold HBSS. Then, centrifuge tubes at 4 °C for 10 min at 1600 x g.
  4. Aspirate as much supernatant as possible without disturbing the cell pellet and flick the tube with the fingers to loosen the cells.
  5. Add 200 µL of cold HBSS to the unstained and isotype tubes.
  6. Calculate the volume of HBSS for resuspension of the blood and epithelial tube according to the total cell count.
    NOTE: Resuspension volume = 0.15 x [total cell count (step 8 of sputum dissociation) / 106]. Use 50 x 106 as the cell count for an extra-large sample.
  7. Store all sample and compensation tubes, protected from light on the ice at 4 °C until flow cytometry analysis is performed.
    ​NOTE: This protocol has not been tested for storage for more than 24 h.

5. Data acquisition on the flow cytometer

  1. Apply appropriate startup procedures for the flow cytometer being used.
    NOTE: This section of the protocol assumes that the person operating the flow cytometer is trained in the use of the instrument available to them, especially concerning daily procedures including checking the stability of the optics and fluidics systems, techniques for standardizing light scatter and fluorescence intensity, as well as calculating and applying the correct compensation matrix.
  2. Use the mixture of National Institute of Standards and Technology (NIST) beads to ensure that forward scatter and side scatter voltages are set to place the NIST beads to span the entire plot without placing the beads too close to the axes.
    NOTE: This step is crucial to ensure that debris smaller than 5 µm can be eliminated by gating post-acquisition analysis. Depending on the flow cytometer used, be mindful that the smallest beads are not being excluded with the threshold (when using the LSR II or the Lyric) or with the high discriminator (using the Navios EX flow cytometer). For the Navios EX, a gain of 2 was used for the forward and side scatter, a voltage of 236 for forward scatter, and 250 for side scatter. For the LSR II, a forward scatter voltage of 165 and a side scatter voltage of 190 was used.
  3. Set the flow rate to medium (LSR II) or high (Navios EX).
    NOTE: The medium or high flow rate for most instruments can be used to acquire the sputum tubes. It is important to note that using too slow of a flow rate or too dilute of the sample may result in the cells settling, resulting in increased vortexing which is not desired. Therefore, adhering to the calculated resuspension volume in step 4.6 should result in cellular density that can be acquired quickly but not clog the machine.
  4. Adjust the voltages for each parameter used for the scatter and fluorescent parameters to place the cell populations on the scale. Use the figures with the gating strategy as guidance on how to adjust the voltages accordingly.
    NOTE: Ensure that all the parameters needed are selected in the parameter selection window before the acquisition or that data will not be acquired.
  5. Acquire data for the unstained sputum sample first, followed by the isotype-stained sample, and then the blood tube and the epithelial tube.
    NOTE: If the cell suspension is too concentrated to allow the flow cytometer to run the samples without clogging, the samples may be further diluted with HBSS.

Results

This protocol was developed with a clinical laboratory setting in mind. The focus during the development of the protocol was on simplicity, efficiency, and reproducibility. It was found that the most time-consuming step in the processing of sputum was counting the cells. Therefore, the protocol is set up in such a way that sputum processing and cell labeling can be performed independently from cell counting without loss of time. An accurate cell count, which is still necessary to dilute the sample appropriately for an un...

Discussion

The cellular content of sputum includes a large variety of wide-ranging cells, often accompanied by a lot of debris37. In addition, sputum analysis requires a quality control that confirms the sample is collected from the lung instead of the oral cavity38. Therefore, it is not as simple to analyze sputum by flow cytometry as it is for blood, for example, which releases a much cleaner and homogeneous cell suspension. This protocol has addressed all these issues: providing in...

Disclosures

All the authors are past or current employees of bioAffinity Technologies.

Acknowledgements

We want to thank David Rodriguez for his assistance with the figure preparation. Sputum samples were run on the BD LSR II at the UT Health San Antonio Flow Cytometry Shared Resource Facility, supported by UT Health, NIH-NCI P30 CA054174-20 (CTRC at UT Health) and UL1 TR001120 (CTSA grant).

Materials

NameCompanyCatalog NumberComments
1% Paraformaldehyde Flow-FixPolysciences25037
100 µM nylon cell strainers, Falcon #352360Fisher Scientific08-771-19
3 M NaOHEMDSX0593-1
50 mL conical falcon tubeFisher Scientific14-432-22
Alexa488 anti-human CD19BioLegend302219
Alexa488 anti-human CD3BioLegend300415
Alexa488 anti-human cytokeratinBioLegend628608
Alexa488 PanCK, CD3, and CD19 IsotypeBioLegend400129
BV510 anti-human CD45BioLegend304036
CD66b FITC isotypeBD Biosciences555748
CompBead Plus Compensation BeadsBD Biosciences560497
Corning Polystyrene dispoable sterile bottle 250 mLFisher Scientific09-761-4
Corning Polystyrene dispoable sterile bottle 500 mLFisher Scientific09-761-10
CS&T beadsBD Biosciences655051
DTTFisher ScientificBP172-5
FITC anti-human CD66bGeneTexGTX75907
Fixable Viability StainBD Biosciences564406
FlowCheckBeckman CoulterA69183
FlowSetBeckman CoulterA69184
HBSSFisher Scientific14-175-095
NACSigma-AldrichA9165
NIST Beads, 05 μMPolysciences64080
NIST Beads, 20 μMPolysciences64160
NIST Beads, 30 μMPolysciences64170
PE anti-human CD45BioLegend304039
PE-CF594 anti-human EpCAMBD Biosciences565399
PE-CF594 CD206/EpCAM IsotypeBD Biosciences562292
PE-CR594 anti-human CD206BD Biosciences564063
Sodium citrate dihydrateEMDSX0445-1
Trypan Blue solution, 0.4%Fisher Scientific15250061

References

  1. Lugli, E., Roederer, M., Cossarizza, A. Data analysis in flow cytometry: the future just started. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 77 (7), 705-713 (2010).
  2. Perfetto, S. P., Chattopadhyay, P. K., Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nature Reviews. Immunology. 4 (8), 648-655 (2004).
  3. Chattopadhyay, P. K., Roederer, M. Cytometry: today's technology and tomorrow's horizons. Methods. 57 (3), 251-258 (2012).
  4. Robinson, J. P., Roederer, M. History of science. Flow cytometry strikes gold. Science. 350 (6262), 739-740 (2015).
  5. Orfao, A., et al. Immunophenotypic dissection of normal hematopoiesis. Journal of Immunological Methods. 475, 112684 (2019).
  6. Craig, F. E., Foon, K. A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 111 (8), 3941-3967 (2008).
  7. Bento, L. C., et al. The use of flow cytometry in myelodysplastic syndromes: A review. Frontiers in Oncology. 7, 270 (2017).
  8. Della Porta, M. G., Picone, C. Diagnostic utility of flow cytometry in myelodysplastic syndromes. Mediterranean Journal of Hematology and Infectious Diseases. 9 (1), 2017017 (2017).
  9. Belda, J., et al. Induced sputum cell counts in healthy adults. American Journal of Respiratory and Critical Care Medicine. 161 (2), 475-478 (2000).
  10. Spanevello, A., et al. Induced sputum cellularity. Reference values and distribution in normal volunteers. American Journal of Respiratory and Critical Care Medicine. 162 (3), 1172-1174 (2000).
  11. Thomas, R. A., et al. The influence of age on induced sputum differential cell counts in normal subjects. Chest. 126 (6), 1811-1814 (2004).
  12. Hastie, A. T., et al. Mixed sputum granulocyte longitudinal impact on lung function in the severe asthma research program. American Journal of Respiratory and Critical Care Medicine. 203 (7), 882-892 (2021).
  13. Hastie, A. T., et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. The Lancet. Respiratory Medicine. 5 (12), 956-967 (2017).
  14. Kim, J., et al. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. The Journal of Allergy and Clinical Immunology. 143 (5), 1769-1782 (2019).
  15. Bai, Y., Zhou, Q., Fang, Q., Song, L., Chen, K. Inflammatory cytokines and T-Lymphocyte subsets in serum and sputum in patients with bronchial asthma and chronic obstructive pulmonary disease. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 25, 2206-2210 (2019).
  16. Patriquin, L., et al. Early detection of lung cancer with meso tetra (4-Carboxyphenyl) porphyrin-labeled sputum. Journal of Thoracic Oncology. 10 (9), 1311-1318 (2015).
  17. Hristara-Papadopoulou, A., Tsanakas, J., Diomou, G., Papadopoulou, O. Current devices of respiratory physiotherapy. Hippokratia. 12 (4), 211-220 (2008).
  18. Fahy, J. V., Liu, J., Wong, H., Boushey, H. A. Cellular and biochemical analysis of induced sputum from asthmatic and from healthy subjects. The American Review of Respiratory Disease. 147 (5), 1126-1131 (1993).
  19. Alexis, N., Soukup, J., Ghio, A., Becker, S. Sputum phagocytes from healthy individuals are functional and activated: a flow cytometric comparison with cells in bronchoalveolar lavage and peripheral blood. Clinical Immunology. 97 (1), 21-32 (2000).
  20. Guiot, J., et al. Methodology for sputum induction and laboratory processing. Journal of Visualized Experiments: JoVE. (130), e56612 (2017).
  21. Paggiaro, P. L., et al. Sputum induction. The European Respiratory Journal. Supplement. 37, 3-8 (2002).
  22. Anjuman, N., Li, N., Guarnera, M., Stass, S. A., Jiang, F. Evaluation of lung flute in sputum samples for molecular analysis of lung cancer. Clinical and Translational Medicine. 2, 15 (2013).
  23. Sethi, S., Yin, J., Anderson, P. K. Lung flute improves symptoms and health status in COPD with chronic bronchitis: A 26 week randomized controlled trial. Clinical and Translational Medicine. 3, 29 (2014).
  24. Su, J., et al. Analysis of lung flute-collected sputum for lung cancer diagnosis. Biomarker Insights. 10, 55-61 (2015).
  25. Naraparaju, S., Vaishali, K., Venkatesan, P., Acharya, V. A comparison of the Acapella and a threshold inspiratory muscle trainer for sputum clearance in bronchiectasis-A pilot study. Physiotherapy Theory and Practice. 26 (6), 353-357 (2010).
  26. Hinson, K. F., Kuper, S. W. The diagnosis of lung cancer by examination of sputum. Thorax. 18, 350-353 (1963).
  27. Johnston, W. W., Bossen, E. H. Ten years of respiratory cytopathology at Duke University Medical Center. I. The cytopathologic diagnosis of lung cancer during the years 1970 to 1974, noting the significance of specimen number and type. Acta Cytologica. 25 (2), 103-107 (1981).
  28. Ng, A. B., Horak, G. C. Factors significant in the diagnostic accuracy of lung cytology in bronchial washing and sputum samples. II. Sputum samples. Acta Cytologica. 27 (4), 397-402 (1983).
  29. . Smiths Medical Videos Available from: https://videos.smiths-medical.com/search?q=acapella&page=1 (2021)
  30. Pizzichini, E., et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. American Journal of Respiratory and Critical Care Medicine. 154 (2), 308-317 (1996).
  31. Miller, H. R., Phipps, P. H., Rossier, E. Reduction of nonspecific fluorescence in respiratory specimens by pretreatment with N-acetylcysteine. Journal of Clinical Microbiology. 24 (3), 470-471 (1986).
  32. Baumgarth, N., Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. Journal of Immunological Methods. 243 (1-2), 77-97 (2000).
  33. Maecker, H. T., Trotter, J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 69 (9), 1037-1042 (2006).
  34. Cossarizza, A., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology. 49 (10), 1457 (2019).
  35. Stewart, C. C., Stewart, S. J. Titering antibodies. Current Protocols in Cytometry. , (2001).
  36. Kasai, Y., et al. biopsy of human oral mucosal epithelial cells as a quality control of the cell source for fabrication of transplantable epithelial cell sheets for regenerative medicine. Regenerative Therapy. 4, 71-77 (2016).
  37. Kini, S. R. . Color Atlas of Pulmonary Cytopathology. , (2002).
  38. Papanicolaou Society of Cytopathology Task Force on Standards of Practice. Guidelines of the Papanicolaou Society of Cytopathology for the examination of cytologic specimens obtained from the respiratory tract. Diagnostic Cytopathology. 21 (1), 61-69 (1999).
  39. Holmes, K. L., et al. International Society for the Advancement of Cytometry cell sorter biosafety standards. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 85 (5), 434-453 (2014).
  40. Datta, S., Shah, L., Gilman, R. H., Evans, C. A. Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. The Lancet Global Health. 5 (8), 760-771 (2017).
  41. Armstrong-Hough, M., et al. "Something so hard": a mixed-methods study of home sputum collection for tuberculosis contact investigation in Uganda. The International Journal of Tuberculosis and Lung Disease: The Official Journal of the International Union Against Tuberculosis and Lung Disease. 22 (10), 1152-1159 (2018).
  42. Freeman, C. M., et al. Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). Journal of Translational Medicine. 13, 19 (2015).
  43. Petsky, H. L., Li, A., Chang, A. B. Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. The Cochrane Database of Systematic Reviews. 8, 005603 (2017).
  44. Hisert, K. B., Liles, W. C., Manicone, A. M. A flow cytometric method for isolating cystic fibrosis airway macrophages from expectorated sputum. American Journal of Respiratory Cell and Molecular Biology. 61 (1), 42-50 (2019).
  45. Duncan, G. A., et al. Microstructural alterations of sputum in cystic fibrosis lung disease. Journal of Clinical Investigation Insight. 1 (18), 88198 (2016).
  46. Kemp, R. A., Reinders, D. M., Turic, B. Detection of lung cancer by automated sputum cytometry. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2 (11), 993-1000 (2007).
  47. Blandin Knight, S., et al. Progress and prospects of early detection in lung cancer. Open Biology. 7 (9), (2017).
  48. Gomperts, B. N., Spira, A., Elashoff, D. E., Dubinett, S. M. Lung cancer biomarkers: FISHing in the sputum for risk assessment and early detection. Cancer Prevention Research. 3 (4), 420-423 (2010).
  49. Demoruelle, M. K., et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis & Rheumatology. 70 (4), 516-527 (2018).
  50. Wang, K., et al. Differences of severe acute respiratory syndrome coronavirus 2 shedding duration in sputum and nasopharyngeal swab specimens among adult inpatients with coronavirus disease 2019. Chest. 158 (5), 1876-1884 (2020).
  51. Chattopadhyay, P. K., Hogerkorp, C. -. M., Roederer, M. A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology. 125 (4), 441-449 (2008).
  52. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M., Love, J. C. Single-cell technologies for monitoring immune systems. Nature Immunology. 15 (2), 128-135 (2014).
  53. Perfetto, S. P., et al. Amine-reactive dyes for dead cell discrimination in fixed samples. Current Protocols in Cytometry. , (2010).
  54. Chattopadhyay, P. K., et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nature Medicine. 12 (8), 972-977 (2006).
  55. Duetz, C., Bachas, C., Westers, T. M., Avan de Loosdrecht, A. A. Computational analysis of flow cytometry data in hematological malignancies: future clinical practice. Current Opinion in Oncology. 32 (2), 162-169 (2020).
  56. Saeys, Y., Van Gassen, S., Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nature Reviews. Immunology. 16 (7), 449-462 (2016).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Sputum AnalysisFlow CytometryCell CountClinical DiagnosticsAntibody StainingDye StainingLung Health ResearchCOPDAsthmaLung CancerCOVID 19 EffectsSingle cell SuspensionHemocytometerLive dead Cell CountCompensation Tubes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved