Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This paper describes a porcine model of negative pressure ventilation ex situ lung perfusion, including procurement, attachment, and management on the custom-made platform. Focus is made on anesthetic and surgical techniques, as well as troubleshooting.

Abstract

Lung transplantation (LTx) remains the standard of care for end-stage lung disease. A shortage of suitable donor organs and concerns over donor organ quality exacerbated by excessive geographic transportation distance and stringent donor organ acceptance criteria pose limitations to current LTx efforts. Ex situ lung perfusion (ESLP) is an innovative technology that has shown promise in attenuating these limitations. The physiologic ventilation and perfusion of the lungs outside of the inflammatory milieu of the donor body affords ESLP several advantages over traditional cold static preservation (CSP). There is evidence that negative pressure ventilation (NPV) ESLP is superior to positive pressure ventilation (PPV) ESLP, with PPV inducing more significant ventilator-induced lung injury, pro-inflammatory cytokine production, pulmonary edema, and bullae formation. The NPV advantage is perhaps due to the homogenous distribution of intrathoracic pressure across the entire lung surface. The clinical safety and feasibility of a custom NPV-ESLP device have been demonstrated in a recent clinical trial involving extender criteria donor (ECD) human lungs. Herein, the use of this custom device is described in a juvenile porcine model of normothermic NPV-ESLP over a 12 h duration, paying particular attention to management techniques. Pre-surgical preparation, including ESLP software initialization, priming, and de-airing of the ESLP circuit, and the addition of anti-thrombotic, anti-microbial, and anti-inflammatory agents, is specified. The intraoperative techniques of central line insertion, lung biopsy, exsanguination, blood collection, cardiectomy, and pneumonectomy are described. Furthermore, particular focus is paid to anesthetic considerations, with anesthesia induction, maintenance, and dynamic modifications outlined. The protocol also specifies the custom device's initialization, maintenance, and termination of perfusion and ventilation. Dynamic organ management techniques, including alterations in ventilation and metabolic parameters to optimize organ function, are thoroughly described. Finally, the physiological and metabolic assessment of lung function is characterized and depicted in the representative results.

Introduction

Lung transplantation (LTx) remains the standard of care for end-stage lung disease1; however, LTx has significant limitations including inadequate donor organ utilization2 and a waitlist mortality of 40%3, which is higher than any other solid organ transplant4,5. Donor organ utilization rates are low (20-30%) due to organ quality concerns. Excessive geographic transportation distance compounded by stringent donor organ acceptance criteria exacerbates these quality concerns. LTx also trails other solid organ transplants in terms of long-ter....

Protocol

The procedures performed in this manuscript comply with the guidelines of the Canadian Council on Animal Care and the guide for the care and use of laboratory animals. The institutional animal care committee of the University of Alberta approved the protocols. Female juvenile Yorkshire pigs between 35-50 kg were used exclusively. Proper biosafety training was required by all individuals involved in ESLP procedures. A schematic overview of the entire NPV-ESLP experiment is represented in Figure 1

Representative Results

At the beginning of lung perfusion and ventilation (preservation mode), the lungs will generally have a low pulmonary artery pressure (< 10 mmHg) and low dynamic compliance (< 10 mL/mmHg) as the perfusate warms to normothermia. Yorkshire pigs weighing 35-50 kg typically results in lungs weighing 350-500 g. During the first hour of NPV-ESLP, the measured expiratory tidal volumes (TVe) are 0-2 mL/kg, and the inspiratory tidal volumes (TVi) are 100-200 mL. TVe generally reaches 4-6 mL/kg within 3-6 h, and after that.......

Discussion

There are several critical surgical steps along with troubleshooting needed to ensure a successful ESLP run. Juvenile porcine lungs are extremely delicate compared to adult human lungs, so the procuring surgeon must be cautious when handling porcine lungs. It is critical to attempt a "no-touch" technique to avoid causing trauma and atelectasis when dissecting out the lungs. "No-touch" means using the bare minimum amount of manual manipulation of the lungs during procurement. Recruitment maneuvers while on.......

Acknowledgements

This research was funded on behalf of The Hospital Research Foundation.

....

Materials

NameCompanyCatalog NumberComments
0 ETHIBOND Green 1 x 36" Endo Loop 0ETHICOND8573
2-0 SILK Black 12" x 18" StrandsETHICONSA77G
ABL 800 FLEX Blood Gas AnalyzerRadiometer989-963
Adult-Pediatric Electrostatic Filter HME - SmallCovidien352/5877
Arterial FilterSORIN GROUP01706/03
Backhaus Towel ClampPilling454300
Biomedicus PumpMaquetBPX-80
Cable Ties – White 12”HUASU InternationalHS4830001
Calcium ChlorideFisher ScientificC69-500G
Cooley Sternal RetractorPilling341162
CUSHING Gutschdressing ForcepsPilling466200
D-glucoseSigma-AldrichG5767-500G
Deep Deaver RetractorPilling481826
Debakey Straight Vascular Tissue ForcepsPilling351808
Debakey-Metzenbaum DissectingPilling342202
ScissorsPilling342202
Endotracheal Tube 9.0mm CUFDMallinckrodt9590ECuff removed for ESLP apparatus
Flow TransducerBIO-PROBETX 40
Human Albumin SerumGrifols Therapeutics2223708
Infusion PumpBaxterAS50
Inspire 7 M Hollow Fiber Membrane OxygenatorSORIN GROUPK190690
Intercept Tubing 1/4" x 1/16" x 8'Medtronic3108
Intercept Tubing 3/8" x 3/32" x 6'Medtronic3506
Intercept Tubing Connector 3/8" x 1/2"Medtronic6013
MAYO Dissecting ScissorsPilling460420
Medical Carbon Dioxide TankPraxair5823115
Medical Nitrogen TankPraxairNI M-K
Medical Oxygen TankPraxair2014408
Organ ChamberTevosol
PlasmaLyte ABaxterTB2544
Poole Suction TubePilling162212
Potassium PhosphateFischer ScientificP285-500G
ScaleTANITAKD4063611
Silicon Support MembraneTevosol
Sodium BicarbonateSigma-Aldrich792519-1KG
Sodium Chloride 0.9%BaxterJB1324
Sorin XTRA Cell SaverSORIN GROUP75221
Sternal SawStryker6207
Surgical Electrocautery DeviceKls MartinME411
Temperature Sensor probeOmniacell Tertia Srl1777288F
THAM BufferThermo Fisher Scientific15504020made from UltraPureTM Tris
TruWave Pressure TransducerEdwardsVSYPX272
Two-Lumen Central Venous Catheter 7frArrowg+ardCS-12702-E
Vorse Tubing ClampPilling351377
Willauer-Deaver RetractorPilling341720
Yankauer Suction TubePilling162300

References

Explore More Articles

Normothermic Negative Pressure VentilationEx Situ Lung PerfusionLung FunctionLung MetabolismESLP DeviceNegative Pressure VentilationDonor LungsMarginal LungsJuvenile Pig LungsSternotomyCardiectomyMediastinal PleuraPulmonary LigamentTracheaEsophagusAorta

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved