Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a standardized SAH mouse model, induced by endovascular filament perforation, combined with magnetic resonance imaging (MRI) 24 h after operation to ensure the correct bleeding site and exclude other relevant intracranial pathologies.

Abstract

The endovascular filament perforation model to mimic subarachnoid hemorrhage (SAH) is a commonly used model - however, the technique can cause a high mortality rate as well as an uncontrollable volume of SAH and other intracranial complications such as stroke or intracranial hemorrhage. In this protocol, a standardized SAH mouse model is presented, induced by endovascular filament perforation, combined with magnetic resonance imaging (MRI) 24 h after operation to ensure the correct bleeding site and exclude other relevant intracranial pathologies. Briefly, C57BL/6J mice are anesthetized with an intraperitoneal ketamine/xylazine (70 mg/16 mg/kg body weight) injection and placed in a supine position. After midline neck incision, the common carotid artery (CCA) and carotid bifurcation are exposed, and a 5-0 non-absorbable monofilament polypropylene suture is inserted in a retrograde fashion into the external carotid artery (ECA) and advanced into the common carotid artery. Then, the filament is invaginated into the internal carotid artery (ICA) and pushed forward to perforate the anterior cerebral artery (ACA). After recovery from surgery, mice undergo a 7.0 T MRI 24 h later. The volume of bleeding can be quantified and graded via postoperative MRI, enabling a robust experimental SAH group with the option to perform further subgroup analyses based on blood quantity.

Introduction

Subarachnoid hemorrhage (SAH) is caused by the rupture of an intracranial aneurysm and poses a life-threatening emergency, associated with substantial morbidity and mortality, accounting for approx. 5% of strokes1,2. SAH patients present with severe headaches, neurological dysfunction, and progressive disturbance of consciousness3. Around 30% of SAH patients die within the first 30 days after the initial bleeding event4. Clinically, 50% of patients experience delayed brain injury (DBI) after early brain injury. DBI is characterized by delayed cerebral ischemia an....

Protocol

The experiments were performed in accordance with the guidelines and regulations set forth by Landesamt fuer Gesundheit und Soziales (LaGeSo), Berlin, Germany (G0063/18). In this study, C57Bl/6J male (8-12 weeks old) mice with a weight of 25 ± 0.286 g (average ± s.e.m.) were used.

1. Animal preparation

  1. Induce anesthesia by injecting ketamine (70 mg/kg) and xylazine (16 mg/kg) intraperitoneally. Maintain normal body temperature, contributing to quick induc.......

Representative Results

Mortality
For this study, a total of 92 male C57Bl/6J mice aged between 8-12 weeks were subjected to SAH operation; in these, we observed an overall mortality rate of 11.9% (n = 12). Mortality occurred exclusively within the first 6-24 h after surgery, suggesting perioperative mortality as well as SAH bleeding itself as the most likely contributing factors.

SAH bleeding grade
A total of 50 mice received MRI 24 h postoperatively to confirm SAH and e.......

Discussion

In summary, a standardized SAH mouse model induced by endovascular filament perforation operation is presented with minor invasion, short operative time, and acceptable mortality rates. MRI is conducted 24 h postoperatively to ensure the correct bleeding site and the exclusion of other relevant intracranial pathologies. Furthermore, we classified different SAH bleeding grades and measured bleeding volumes, allowing further subgroup analyses based on bleeding grade.

Adequate positioning of the .......

Acknowledgements

SL was supported by the Chinese Scholarship Council. KT was supported by the BIH-MD scholarship of the Berlin Institute of Health and the Sonnenfeld-Stiftung. RX is supported by the BIH-Charité Clinician Scientist Program, funded by the Charité -Universitätsmedizin Berlin and the Berlin Institute of Health. We acknowledge support from the German Research Foundation (DFG) and the Open Access Publication Fund of Charité - Universitätsmedizin Berlin.

....

Materials

NameCompanyCatalog NumberComments
Eye creamBayer815529836Bepanthen
Images analysis softwareImageJBundled with Java 1.8.0_172
Ligation suture (5-0)SMISilk black USP
Light source for microscopeZeissCL 6000 LED
KetamineCP-pharma797-037100 mg/mL
MRIBrukerPharmascan 70/16 7 Tesla
MRI images acquired softwareBrukerBruker Paravision 5.1
Paracetamol (40 mg/mL)bene Arzneimittel4993736
Prolene filament (5-0)ErhiconEH7255
RazorWellaHS61
Surgical instrument (Fine Scissors)FST14060-09
Surgical instrument (forceps#1)AESCULAPFM001R
Surgical instrument (forceps#2)AESCULAPFD2855R
Surgical instrument (forceps#3)HammacherHCS 082-12
Surgical instrument (Needle holder)FST91201-13
Surgical instrument (Vannas Spring Scissors)FST15000-08
Surgical microscopeZeissStemi 2000 C
Ventilation monitoringStony BrookSmall Animal Monitoring & Gating System
Wounding suture(4-0)ErhiconCB84D
XylavetCP-pharma797-06220 mg/mL

References

  1. Macdonald, R. L., Schweizer, T. A. Spontaneous subarachnoid haemorrhage. The Lancet. 389 (10069), 655-666 (2017).
  2. van Gijn, J., Kerr, R. S., Rinkel, G. J. Subarachnoid haemorrhage. The Lancet. 369 (9558), 306-318 (2007).
  3. Abraham, M. K.,....

Explore More Articles

Endovascular Perforation ModelSubarachnoid HemorrhageMagnetic Resonance Imaging MRIMouseCommon Carotid ArteryExternal Carotid ArteryInternal Carotid ArteryProlene FilamentACA MCA BifurcationSubarachnoid Space

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved