A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here we present a standardized SAH mouse model, induced by endovascular filament perforation, combined with magnetic resonance imaging (MRI) 24 h after operation to ensure the correct bleeding site and exclude other relevant intracranial pathologies.
The endovascular filament perforation model to mimic subarachnoid hemorrhage (SAH) is a commonly used model - however, the technique can cause a high mortality rate as well as an uncontrollable volume of SAH and other intracranial complications such as stroke or intracranial hemorrhage. In this protocol, a standardized SAH mouse model is presented, induced by endovascular filament perforation, combined with magnetic resonance imaging (MRI) 24 h after operation to ensure the correct bleeding site and exclude other relevant intracranial pathologies. Briefly, C57BL/6J mice are anesthetized with an intraperitoneal ketamine/xylazine (70 mg/16 mg/kg body weight) injection and placed in a supine position. After midline neck incision, the common carotid artery (CCA) and carotid bifurcation are exposed, and a 5-0 non-absorbable monofilament polypropylene suture is inserted in a retrograde fashion into the external carotid artery (ECA) and advanced into the common carotid artery. Then, the filament is invaginated into the internal carotid artery (ICA) and pushed forward to perforate the anterior cerebral artery (ACA). After recovery from surgery, mice undergo a 7.0 T MRI 24 h later. The volume of bleeding can be quantified and graded via postoperative MRI, enabling a robust experimental SAH group with the option to perform further subgroup analyses based on blood quantity.
Subarachnoid hemorrhage (SAH) is caused by the rupture of an intracranial aneurysm and poses a life-threatening emergency, associated with substantial morbidity and mortality, accounting for approx. 5% of strokes1,2. SAH patients present with severe headaches, neurological dysfunction, and progressive disturbance of consciousness3. Around 30% of SAH patients die within the first 30 days after the initial bleeding event4. Clinically, 50% of patients experience delayed brain injury (DBI) after early brain injury. DBI is characterized by delayed cerebral ischemia an....
The experiments were performed in accordance with the guidelines and regulations set forth by Landesamt fuer Gesundheit und Soziales (LaGeSo), Berlin, Germany (G0063/18). In this study, C57Bl/6J male (8-12 weeks old) mice with a weight of 25 ± 0.286 g (average ± s.e.m.) were used.
1. Animal preparation
Mortality
For this study, a total of 92 male C57Bl/6J mice aged between 8-12 weeks were subjected to SAH operation; in these, we observed an overall mortality rate of 11.9% (n = 12). Mortality occurred exclusively within the first 6-24 h after surgery, suggesting perioperative mortality as well as SAH bleeding itself as the most likely contributing factors.
SAH bleeding grade
A total of 50 mice received MRI 24 h postoperatively to confirm SAH and e.......
In summary, a standardized SAH mouse model induced by endovascular filament perforation operation is presented with minor invasion, short operative time, and acceptable mortality rates. MRI is conducted 24 h postoperatively to ensure the correct bleeding site and the exclusion of other relevant intracranial pathologies. Furthermore, we classified different SAH bleeding grades and measured bleeding volumes, allowing further subgroup analyses based on bleeding grade.
Adequate positioning of the .......
SL was supported by the Chinese Scholarship Council. KT was supported by the BIH-MD scholarship of the Berlin Institute of Health and the Sonnenfeld-Stiftung. RX is supported by the BIH-Charité Clinician Scientist Program, funded by the Charité -Universitätsmedizin Berlin and the Berlin Institute of Health. We acknowledge support from the German Research Foundation (DFG) and the Open Access Publication Fund of Charité - Universitätsmedizin Berlin.
....Name | Company | Catalog Number | Comments |
Eye cream | Bayer | 815529836 | Bepanthen |
Images analysis software | ImageJ | Bundled with Java 1.8.0_172 | |
Ligation suture (5-0) | SMI | Silk black USP | |
Light source for microscope | Zeiss | CL 6000 LED | |
Ketamine | CP-pharma | 797-037 | 100 mg/mL |
MRI | Bruker | Pharmascan 70/16 | 7 Tesla |
MRI images acquired software | Bruker | Bruker Paravision 5.1 | |
Paracetamol (40 mg/mL) | bene Arzneimittel | 4993736 | |
Prolene filament (5-0) | Erhicon | EH7255 | |
Razor | Wella | HS61 | |
Surgical instrument (Fine Scissors) | FST | 14060-09 | |
Surgical instrument (forceps#1) | AESCULAP | FM001R | |
Surgical instrument (forceps#2) | AESCULAP | FD2855R | |
Surgical instrument (forceps#3) | Hammacher | HCS 082-12 | |
Surgical instrument (Needle holder) | FST | 91201-13 | |
Surgical instrument (Vannas Spring Scissors) | FST | 15000-08 | |
Surgical microscope | Zeiss | Stemi 2000 C | |
Ventilation monitoring | Stony Brook | Small Animal Monitoring & Gating System | |
Wounding suture(4-0) | Erhicon | CB84D | |
Xylavet | CP-pharma | 797-062 | 20 mg/mL |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved